You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/shardformer/policies/bert.py

319 lines
13 KiB

import torch.nn as nn
from transformers.models.bert.modeling_bert import (
BertEmbeddings,
BertForMultipleChoice,
BertForSequenceClassification,
BertForTokenClassification,
BertLayer,
BertLMPredictionHead,
)
import colossalai.shardformer.layer as col_nn
from .._utils import getattr_, setattr_
from .basepolicy import ModulePolicyDescription, Policy, SubModuleReplacementDescription
class BertPolicy(Policy):
def preprocess(self):
# reshape the embedding layer
r"""
Reshape the Embedding layer to make the embedding dimension divisible by world_size
"""
# TODO:
vocab_size = self.model.config.vocab_size
world_size = self.shard_config.tensor_parallel_size
if vocab_size % world_size != 0:
new_vocab_size = vocab_size + world_size - vocab_size % world_size
self.model.resize_token_embeddings(new_vocab_size)
return self.model
def module_policy(self):
base_policy = {
BertLayer:
ModulePolicyDescription(
attribute_replacement={
# 1. shard hidden size
"attention.self.all_head_size":
self.model.config.hidden_size // self.shard_config.tensor_parallel_size,
"crossattention.self.all_head_size":
self.model.config.hidden_size // self.shard_config.tensor_parallel_size,
# 2. shard number of heads
"attention.self.num_attention_heads":
self.model.config.num_attention_heads // self.shard_config.tensor_parallel_size,
"crossattention.self.num_attention_heads":
self.model.config.num_attention_heads // self.shard_config.tensor_parallel_size,
},
param_replacement=[],
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="attention.self.query",
target_module=col_nn.Linear1D_Col,
),
SubModuleReplacementDescription(
suffix="attention.self.key",
target_module=col_nn.Linear1D_Col,
),
SubModuleReplacementDescription(
suffix="attention.self.value",
target_module=col_nn.Linear1D_Col,
),
SubModuleReplacementDescription(
suffix="attention.self.dropout",
target_module=col_nn.Dropout1D,
),
SubModuleReplacementDescription(
suffix="attention.output.dense",
target_module=col_nn.Linear1D_Row,
),
SubModuleReplacementDescription(
suffix="attention.output.dropout",
target_module=col_nn.Dropout1D,
),
SubModuleReplacementDescription(
suffix="intermediate.dense",
target_module=col_nn.Linear1D_Col,
),
SubModuleReplacementDescription(
suffix="output.dense",
target_module=col_nn.Linear1D_Row,
),
SubModuleReplacementDescription(
suffix="output.dropout",
target_module=col_nn.Dropout1D,
)
]),
BertEmbeddings:
ModulePolicyDescription(attribute_replacement={},
param_replacement=[],
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="word_embeddings",
target_module=col_nn.VocabParallelEmbedding1D,
),
SubModuleReplacementDescription(
suffix="dropout",
target_module=col_nn.Dropout1D,
)
])
}
if self.shard_config.fused_layernorm:
base_policy[BertLayer].sub_module_replacement.append(
SubModuleReplacementDescription(
suffix="attention.output.LayerNorm",
target_module=col_nn.FusedLayerNorm,
))
base_policy[BertLayer].sub_module_replacement.append(
SubModuleReplacementDescription(
suffix="output.LayerNorm",
target_module=col_nn.FusedLayerNorm,
))
base_policy[BertEmbeddings].sub_module_replacement.append(
SubModuleReplacementDescription(
suffix="LayerNorm",
target_module=col_nn.FusedLayerNorm,
),)
return base_policy
def new_model_class(self):
# do nothing
return self.model
def postprocess(self):
return self.model
# BertModel
class BertModelPolicy(BertPolicy):
def __init__(self) -> None:
super().__init__()
# BertForPreTraining
class BertForPretrainingPolicy(BertPolicy):
def __init__(self) -> None:
super().__init__()
def module_policy(self):
module_policy = super().module_policy()
addon_module = {
BertLMPredictionHead:
ModulePolicyDescription(attribute_replacement={},
param_replacement=[],
sub_module_replacement=[
SubModuleReplacementDescription(suffix="decoder",
target_module=col_nn.Linear1D_Col,
kwargs={"gather_output": True}),
])
}
if self.shard_config.fused_layernorm:
addon_module[BertLMPredictionHead].sub_module_replacement.append(
SubModuleReplacementDescription(
suffix="transform.LayerNorm",
target_module=col_nn.FusedLayerNorm,
))
module_policy.update(addon_module)
return module_policy
def postprocess(self):
binding_map = {"bert.embeddings.word_embeddings.weight": "cls.predictions.decoder.weight"}
for k, v in binding_map.items():
param = getattr_(self.model, k)
param = nn.Parameter(param)
setattr_(self.model, k, param)
setattr_(self.model, v, param)
return self.model
# BertLMHeadModel
class BertLMHeadModelPolicy(BertPolicy):
def __init__(self) -> None:
super().__init__()
def module_policy(self):
module_policy = super().module_policy()
addon_module = {
BertLMPredictionHead:
ModulePolicyDescription(attribute_replacement={},
param_replacement=[],
sub_module_replacement=[
SubModuleReplacementDescription(suffix="decoder",
target_module=col_nn.Linear1D_Col,
kwargs={"gather_output": True}),
])
}
if self.shard_config.fused_layernorm:
addon_module[BertLMPredictionHead].sub_module_replacement.append(
SubModuleReplacementDescription(
suffix="transform.LayerNorm",
target_module=col_nn.FusedLayerNorm,
))
module_policy.update(addon_module)
return module_policy
def postprocess(self):
binding_map = {"bert.embeddings.word_embeddings.weight": "cls.predictions.decoder.weight"}
for k, v in binding_map.items():
param = getattr_(self.model, k)
param = nn.Parameter(param)
setattr_(self.model, k, param)
setattr_(self.model, v, param)
return self.model
# BertForMaskedLM
class BertForMaskedLMPolicy(BertPolicy):
def __init__(self) -> None:
super().__init__()
def module_policy(self):
module_policy = super().module_policy()
addon_module = {
BertLMPredictionHead:
ModulePolicyDescription(attribute_replacement={},
param_replacement=[],
sub_module_replacement=[
SubModuleReplacementDescription(suffix="decoder",
target_module=col_nn.Linear1D_Col,
kwargs={"gather_output": True}),
])
}
if self.shard_config.fused_layernorm:
addon_module[BertLMPredictionHead].sub_module_replacement.append(
SubModuleReplacementDescription(
suffix="transform.LayerNorm",
target_module=col_nn.FusedLayerNorm,
))
module_policy.update(addon_module)
return module_policy
def postprocess(self):
binding_map = {"bert.embeddings.word_embeddings.weight": "cls.predictions.decoder.weight"}
for k, v in binding_map.items():
param = getattr_(self.model, k)
param = nn.Parameter(param)
setattr_(self.model, k, param)
setattr_(self.model, v, param)
return self.model
# BertForSequenceClassification
class BertForSequenceClassificationPolicy(BertPolicy):
def __init__(self) -> None:
super().__init__()
def module_policy(self):
module_policy = super().module_policy()
addon_module = {
BertForSequenceClassification:
ModulePolicyDescription(attribute_replacement={},
param_replacement=[],
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="dropout",
target_module=col_nn.Dropout1D,
)
])
}
module_policy.update(addon_module)
return module_policy
# BertForTokenClassification
class BertForTokenClassificationPolicy(BertPolicy):
def __init__(self) -> None:
super().__init__()
def module_policy(self):
module_policy = super().module_policy()
addon_module = {
BertForTokenClassification:
ModulePolicyDescription(attribute_replacement={},
param_replacement=[],
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="dropout",
target_module=col_nn.Dropout1D,
)
])
}
module_policy.update(addon_module)
return module_policy
# BertForNextSentencePrediction
class BertForNextSentencePredictionPolicy(BertPolicy):
def __init__(self) -> None:
super().__init__()
# BertForMultipleChoice
class BertForMultipleChoicePolicy(BertPolicy):
def __init__(self) -> None:
super().__init__()
def module_policy(self):
module_policy = super().module_policy()
addon_module = {
BertForMultipleChoice:
ModulePolicyDescription(attribute_replacement={},
param_replacement=[],
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="dropout",
target_module=col_nn.Dropout1D,
)
])
}
module_policy.update(addon_module)
return module_policy