ColossalAI/applications/ColossalMoE/colossal_moe/models/mixtral_layer.py

90 lines
3.3 KiB
Python
Raw Normal View History

2023-12-14 09:52:05 +00:00
import torch
import torch.nn as nn
from transformers.models.mixtral.modeling_mixtral import MixtralSparseMoeBlock
from colossalai.lazy import LazyInitContext
from colossalai.moe import SparseMLP
class MixtralSparseMLP:
r"""
This is a wrapper around the apex fused layernorm implementation. It is meant to be used only with the from_native_module interface.
"""
def __init__(self) -> None:
raise NotImplementedError(
"FusedLayerNorm is not implemented as a physical class. "
"It is meant to be used only with the from_native_module interface convert a native pytorch layer norm module to FusedLayerNorm module provided by apex."
)
@staticmethod
def from_native_module(module: MixtralSparseMoeBlock, *args, **kwargs) -> nn.Module:
r"""
Convert a native pytorch layer norm module to FusedLayerNorm module provided by apex,
and optionally marking parameters for gradient aggregation.
Args:
module (nn.LayerNorm): The native PyTorch LayerNorm module to be converted.
sp_partial_derived (bool): Whether this module's gradients are partially derived in sequence parallelism.
Returns:
nn.Module: Union[FastLayerNorm, FusedLayerNorm].
Raises:
AssertionError: If the provided module is not an instance of nn.LayerNorm.
"""
LazyInitContext.materialize(module)
# get the attributes of the module
moe_kwargs = dict(
num_experts=module.num_experts,
hidden_size=module.hidden_dim,
intermediate_size=module.ffn_dim,
router_top_k=module.top_k,
# router_capacity_factor_train = module.
# router_capacity_factor_eval = module.
# router_min_capacity = module.
# router_noisy_policy = module.
# router_drop_tks = module.
mlp_activation="silu",
mlp_gated=True,
# enable_load_balance = module.
# load_balance_tolerance = module.
# load_balance_beam_width = module.
# load_balance_group_swap_factor = module.
# enable_kernel = module.
# enable_comm_overlap = module.
# enable_hierarchical_comm = module.
return_gate_logits=True,
)
dtype = module.gate.weight.dtype
device = module.gate.weight.device
sparse_mlp = SparseMLP(**moe_kwargs).to(dtype).to(device)
w1 = None
w2 = None
w3 = None
for i in module.experts:
wi_1 = i.w1.weight.data.transpose(0, 1).unsqueeze(0)
wi_2 = i.w2.weight.data.transpose(0, 1).unsqueeze(0)
wi_3 = i.w3.weight.data.transpose(0, 1).unsqueeze(0)
if w1 is None:
w1 = wi_1
else:
w1 = torch.cat([w1, wi_1], dim=0)
if w2 is None:
w2 = wi_2
else:
w2 = torch.cat([w2, wi_2], dim=0)
if w3 is None:
w3 = wi_3
else:
w3 = torch.cat([w3, wi_3], dim=0)
sparse_mlp.experts.wi_gate.data = w1[:2]
sparse_mlp.experts.wi_up.data = w3[:2]
sparse_mlp.experts.wo.data = w2[:2]
sparse_mlp.gate_weight = module.gate.weight
return sparse_mlp.to(dtype).to(device)