mirror of https://github.com/hpcaitech/ColossalAI
118 lines
3.5 KiB
Python
118 lines
3.5 KiB
Python
|
from typing import Optional
|
||
|
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
|
||
|
from .utils import masked_mean
|
||
|
|
||
|
|
||
|
class GPTLMLoss(nn.Module):
|
||
|
"""
|
||
|
GPT Language Model Loss
|
||
|
"""
|
||
|
|
||
|
def __init__(self):
|
||
|
super().__init__()
|
||
|
self.loss = nn.CrossEntropyLoss()
|
||
|
|
||
|
def forward(self, logits: torch.Tensor, labels: torch.Tensor) -> torch.Tensor:
|
||
|
shift_logits = logits[..., :-1, :].contiguous()
|
||
|
shift_labels = labels[..., 1:].contiguous()
|
||
|
# Flatten the tokens
|
||
|
return self.loss(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
||
|
|
||
|
|
||
|
class PolicyLoss(nn.Module):
|
||
|
"""
|
||
|
Policy Loss for PPO
|
||
|
"""
|
||
|
|
||
|
def __init__(self, clip_eps: float = 0.2) -> None:
|
||
|
super().__init__()
|
||
|
self.clip_eps = clip_eps
|
||
|
|
||
|
def forward(self,
|
||
|
log_probs: torch.Tensor,
|
||
|
old_log_probs: torch.Tensor,
|
||
|
advantages: torch.Tensor,
|
||
|
action_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
|
||
|
ratio = (log_probs - old_log_probs).exp()
|
||
|
surr1 = ratio * advantages
|
||
|
surr2 = ratio.clamp(1 - self.clip_eps, 1 + self.clip_eps) * advantages
|
||
|
loss = -torch.min(surr1, surr2)
|
||
|
if action_mask is not None:
|
||
|
loss = masked_mean(loss, action_mask)
|
||
|
loss = loss.mean()
|
||
|
return loss
|
||
|
|
||
|
|
||
|
class ValueLoss(nn.Module):
|
||
|
"""
|
||
|
Value Loss for PPO
|
||
|
"""
|
||
|
|
||
|
def __init__(self, clip_eps: float = 0.4) -> None:
|
||
|
super().__init__()
|
||
|
self.clip_eps = clip_eps
|
||
|
|
||
|
def forward(self,
|
||
|
values: torch.Tensor,
|
||
|
old_values: torch.Tensor,
|
||
|
reward: torch.Tensor,
|
||
|
action_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
|
||
|
values_clipped = old_values + (values - old_values).clamp(-self.clip_eps, self.clip_eps)
|
||
|
surr1 = (values_clipped - reward)**2
|
||
|
surr2 = (values - reward)**2
|
||
|
loss = torch.max(surr1, surr2)
|
||
|
loss = loss.mean()
|
||
|
return loss
|
||
|
|
||
|
|
||
|
class PPOPtxActorLoss(nn.Module):
|
||
|
"""
|
||
|
To Do:
|
||
|
|
||
|
PPO-ptx Actor Loss
|
||
|
"""
|
||
|
|
||
|
def __init__(self, policy_clip_eps: float = 0.2, pretrain_coef: float = 0.0, pretrain_loss_fn=GPTLMLoss()) -> None:
|
||
|
super().__init__()
|
||
|
self.pretrain_coef = pretrain_coef
|
||
|
self.policy_loss_fn = PolicyLoss(clip_eps=policy_clip_eps)
|
||
|
self.pretrain_loss_fn = pretrain_loss_fn
|
||
|
|
||
|
def forward(self,
|
||
|
log_probs: torch.Tensor,
|
||
|
old_log_probs: torch.Tensor,
|
||
|
advantages: torch.Tensor,
|
||
|
lm_logits: torch.Tensor,
|
||
|
lm_input_ids: torch.Tensor,
|
||
|
action_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
|
||
|
policy_loss = self.policy_loss_fn(log_probs, old_log_probs, advantages, action_mask=action_mask)
|
||
|
lm_loss = self.pretrain_loss_fn(lm_logits, lm_input_ids)
|
||
|
return policy_loss + self.pretrain_coef * lm_loss
|
||
|
|
||
|
|
||
|
class LogSigLoss(nn.Module):
|
||
|
"""
|
||
|
Pairwise Loss for Reward Model
|
||
|
Details: https://arxiv.org/abs/2203.02155
|
||
|
"""
|
||
|
|
||
|
def forward(self, chosen_reward: torch.Tensor, reject_reward: torch.Tensor) -> torch.Tensor:
|
||
|
probs = torch.sigmoid(chosen_reward - reject_reward)
|
||
|
log_probs = torch.log(probs)
|
||
|
loss = -log_probs.mean()
|
||
|
return loss
|
||
|
|
||
|
|
||
|
class LogExpLoss(nn.Module):
|
||
|
"""
|
||
|
Pairwise Loss for Reward Model
|
||
|
Details: https://arxiv.org/abs/2204.05862
|
||
|
"""
|
||
|
|
||
|
def forward(self, chosen_reward: torch.Tensor, reject_reward: torch.Tensor) -> torch.Tensor:
|
||
|
loss = torch.log(1 + torch.exp(reject_reward - chosen_reward)).mean()
|
||
|
return loss
|