2022-10-18 08:31:22 +00:00
|
|
|
from functools import partial
|
|
|
|
|
|
|
|
import pytest
|
|
|
|
import torch
|
|
|
|
import torch.distributed as dist
|
|
|
|
import torch.multiprocessing as mp
|
|
|
|
|
|
|
|
import colossalai
|
|
|
|
from colossalai.gemini.chunk import ChunkManager, search_chunk_configuration
|
|
|
|
from colossalai.gemini.gemini_mgr import GeminiManager
|
|
|
|
from colossalai.nn.parallel import ZeroDDP
|
|
|
|
from colossalai.testing import parameterize, rerun_if_address_is_in_use
|
|
|
|
from colossalai.utils import free_port
|
|
|
|
from colossalai.utils.cuda import get_current_device
|
|
|
|
from colossalai.utils.model.colo_init_context import ColoInitContext
|
|
|
|
from tests.components_to_test.registry import non_distributed_component_funcs
|
|
|
|
from tests.test_tensor.common_utils import debug_print, set_seed
|
|
|
|
|
|
|
|
|
|
|
|
@parameterize('placement_policy', ['cuda', 'cpu', 'auto'])
|
|
|
|
@parameterize('keep_gathered', [True, False])
|
2022-11-29 09:13:10 +00:00
|
|
|
@parameterize('model_name', ['gpt2', 'bert'])
|
|
|
|
def exam_state_dict(placement_policy, keep_gathered, model_name: str):
|
2022-10-18 08:31:22 +00:00
|
|
|
set_seed(431)
|
2022-11-29 09:13:10 +00:00
|
|
|
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
2022-10-18 08:31:22 +00:00
|
|
|
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
|
|
|
|
|
|
|
with ColoInitContext(device=get_current_device()):
|
|
|
|
model = model_builder()
|
|
|
|
|
|
|
|
torch_model = model_builder()
|
|
|
|
for torch_p, p in zip(torch_model.parameters(), model.parameters()):
|
|
|
|
torch_p.data.copy_(p.data)
|
|
|
|
|
|
|
|
world_size = torch.distributed.get_world_size()
|
|
|
|
config_dict, _ = search_chunk_configuration(model, search_range_mb=1, search_interval_byte=100)
|
|
|
|
config_dict[world_size]['chunk_size'] = 5000
|
|
|
|
config_dict[world_size]['keep_gathered'] = keep_gathered
|
|
|
|
chunk_manager = ChunkManager(config_dict)
|
|
|
|
gemini_manager = GeminiManager(placement_policy, chunk_manager)
|
|
|
|
model = ZeroDDP(model, gemini_manager, pin_memory=True)
|
|
|
|
model.train()
|
|
|
|
|
|
|
|
zero_dict = model.state_dict(only_rank_0=False)
|
|
|
|
torch_dict = torch_model.state_dict()
|
|
|
|
|
|
|
|
for key, value in torch_dict.items():
|
|
|
|
if key == 'model.lm_head.weight':
|
|
|
|
continue
|
|
|
|
assert key in zero_dict, "{} not in ZeRO dictionary.".format(key)
|
|
|
|
temp_zero_value = zero_dict[key].to(device=value.device, dtype=value.dtype)
|
|
|
|
assert torch.equal(value, temp_zero_value), "parameter '{}' has problem.".format(key)
|
|
|
|
|
|
|
|
|
|
|
|
@parameterize('placement_policy', ['cuda', 'cpu', 'auto'])
|
|
|
|
@parameterize('keep_gathered', [True, False])
|
2022-11-29 09:13:10 +00:00
|
|
|
@parameterize('model_name', ['gpt2', 'bert'])
|
|
|
|
def exam_load_state_dict(placement_policy, keep_gathered, model_name: str):
|
2022-10-18 08:31:22 +00:00
|
|
|
set_seed(431)
|
2022-11-29 09:13:10 +00:00
|
|
|
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
2022-10-18 08:31:22 +00:00
|
|
|
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
|
|
|
|
|
|
|
with ColoInitContext(device=get_current_device()):
|
|
|
|
model = model_builder()
|
|
|
|
|
|
|
|
set_seed(451)
|
|
|
|
torch_model = model_builder() # get a different model
|
|
|
|
|
|
|
|
world_size = torch.distributed.get_world_size()
|
|
|
|
config_dict, _ = search_chunk_configuration(model, search_range_mb=1, search_interval_byte=100)
|
|
|
|
config_dict[world_size]['chunk_size'] = 5000
|
|
|
|
config_dict[world_size]['keep_gathered'] = keep_gathered
|
|
|
|
|
|
|
|
if placement_policy != 'cuda':
|
|
|
|
init_device = torch.device('cpu')
|
|
|
|
else:
|
|
|
|
init_device = None
|
|
|
|
chunk_manager = ChunkManager(config_dict, init_device=init_device)
|
|
|
|
gemini_manager = GeminiManager(placement_policy, chunk_manager)
|
|
|
|
model = ZeroDDP(model, gemini_manager, pin_memory=True)
|
|
|
|
|
|
|
|
torch_dict = torch_model.state_dict()
|
|
|
|
model.load_state_dict(torch_dict, strict=False)
|
|
|
|
zero_dict = model.state_dict(only_rank_0=False)
|
|
|
|
|
|
|
|
for key, value in torch_dict.items():
|
|
|
|
if key == 'model.lm_head.weight':
|
|
|
|
continue
|
|
|
|
assert key in zero_dict, "{} not in ZeRO dictionary.".format(key)
|
|
|
|
temp_zero_value = zero_dict[key].to(device=value.device, dtype=value.dtype)
|
|
|
|
assert torch.equal(value, temp_zero_value), "parameter '{}' has problem.".format(key)
|
|
|
|
|
|
|
|
|
|
|
|
def run_dist(rank, world_size, port):
|
|
|
|
config = {}
|
|
|
|
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
|
|
|
exam_state_dict()
|
|
|
|
exam_load_state_dict()
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.dist
|
|
|
|
@pytest.mark.parametrize('world_size', [1, 4])
|
|
|
|
@rerun_if_address_is_in_use()
|
|
|
|
def test_zero_ddp(world_size):
|
|
|
|
run_func = partial(run_dist, world_size=world_size, port=free_port())
|
|
|
|
mp.spawn(run_func, nprocs=world_size)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
test_zero_ddp(1)
|