mirror of https://github.com/hpcaitech/ColossalAI
118 lines
4.4 KiB
Python
118 lines
4.4 KiB
Python
|
from functools import partial
|
||
|
from time import time
|
||
|
|
||
|
import pytest
|
||
|
import torch
|
||
|
import torch.distributed as dist
|
||
|
import torch.multiprocessing as mp
|
||
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
||
|
from torch.testing import assert_close
|
||
|
|
||
|
import colossalai
|
||
|
from colossalai.amp import convert_to_apex_amp
|
||
|
from colossalai.gemini.chunk import ChunkManager, search_chunk_configuration
|
||
|
from colossalai.gemini.gemini_mgr import GeminiManager
|
||
|
from colossalai.nn.optimizer import HybridAdam
|
||
|
from colossalai.nn.optimizer.zero_optimizer import ZeroOptimizer
|
||
|
from colossalai.nn.parallel import ZeroDDP
|
||
|
from colossalai.testing import parameterize, rerun_if_address_is_in_use
|
||
|
from colossalai.utils import free_port
|
||
|
from colossalai.utils.cuda import get_current_device
|
||
|
from colossalai.utils.model.colo_init_context import ColoInitContext
|
||
|
from tests.components_to_test import run_fwd_bwd
|
||
|
from tests.components_to_test.registry import non_distributed_component_funcs
|
||
|
from tests.test_tensor.common_utils import debug_print, set_seed
|
||
|
|
||
|
|
||
|
def check_param(model: ZeroDDP, torch_model: torch.nn.Module):
|
||
|
zero_dict = model.state_dict(only_rank_0=False)
|
||
|
torch_dict = torch_model.state_dict()
|
||
|
|
||
|
for key, value in torch_dict.items():
|
||
|
# key is 'module.model.PARAMETER', so we truncate it
|
||
|
key = key[7:]
|
||
|
if key == 'model.lm_head.weight':
|
||
|
continue
|
||
|
assert key in zero_dict, "{} not in ZeRO dictionary.".format(key)
|
||
|
temp_zero_value = zero_dict[key].to(device=value.device, dtype=value.dtype)
|
||
|
# debug_print([0], "max range: ", key, torch.max(torch.abs(value - temp_zero_value)))
|
||
|
assert_close(value, temp_zero_value, rtol=1e-3, atol=4e-3)
|
||
|
|
||
|
|
||
|
@parameterize('placement_policy', ['cuda', 'cpu', 'auto', 'const'])
|
||
|
@parameterize('model_name', ['gpt2'])
|
||
|
def exam_grad_clipping(placement_policy, model_name: str):
|
||
|
set_seed(1912)
|
||
|
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||
|
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
||
|
|
||
|
torch_model = model_builder().cuda()
|
||
|
amp_config = dict(opt_level='O2', keep_batchnorm_fp32=False, loss_scale=32)
|
||
|
torch_optim = torch.optim.Adam(torch_model.parameters(), lr=1e-3)
|
||
|
torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config)
|
||
|
torch_model = DDP(torch_model, device_ids=[dist.get_rank()])
|
||
|
|
||
|
init_dev = get_current_device()
|
||
|
with ColoInitContext(device=init_dev):
|
||
|
model = model_builder()
|
||
|
|
||
|
for torch_p, p in zip(torch_model.parameters(), model.parameters()):
|
||
|
p.data.copy_(torch_p.data)
|
||
|
|
||
|
world_size = torch.distributed.get_world_size()
|
||
|
config_dict, _ = search_chunk_configuration(model, search_range_mb=1, search_interval_byte=100)
|
||
|
config_dict[world_size]['chunk_size'] = 5000
|
||
|
config_dict[world_size]['keep_gathered'] = False
|
||
|
if placement_policy != 'cuda':
|
||
|
init_device = torch.device('cpu')
|
||
|
else:
|
||
|
init_device = None
|
||
|
chunk_manager = ChunkManager(config_dict, init_device=init_device)
|
||
|
gemini_manager = GeminiManager(placement_policy, chunk_manager)
|
||
|
model = ZeroDDP(model, gemini_manager, pin_memory=True)
|
||
|
|
||
|
optimizer = HybridAdam(model.parameters(), lr=1e-3)
|
||
|
zero_optim = ZeroOptimizer(optimizer, model, initial_scale=32, clipping_norm=1.0)
|
||
|
|
||
|
model.train()
|
||
|
torch_model.train()
|
||
|
|
||
|
set_seed(dist.get_rank() * 3 + 128)
|
||
|
for i, (data, label) in enumerate(train_dataloader):
|
||
|
if i > 2:
|
||
|
break
|
||
|
data = data.cuda()
|
||
|
label = label.cuda()
|
||
|
|
||
|
zero_optim.zero_grad()
|
||
|
torch_optim.zero_grad()
|
||
|
|
||
|
torch_loss = run_fwd_bwd(torch_model, data, label, criterion, torch_optim)
|
||
|
loss = run_fwd_bwd(model, data, label, criterion, zero_optim)
|
||
|
assert_close(torch_loss, loss)
|
||
|
|
||
|
import apex.amp as apex_amp
|
||
|
torch.nn.utils.clip_grad_norm_(apex_amp.master_params(torch_optim), 1.0)
|
||
|
torch_optim.step()
|
||
|
zero_optim.step()
|
||
|
|
||
|
check_param(model, torch_model)
|
||
|
|
||
|
|
||
|
def run_dist(rank, world_size, port):
|
||
|
config = {}
|
||
|
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||
|
exam_grad_clipping()
|
||
|
|
||
|
|
||
|
@pytest.mark.dist
|
||
|
@pytest.mark.parametrize('world_size', [1, 2])
|
||
|
@rerun_if_address_is_in_use()
|
||
|
def test_grad_clip(world_size):
|
||
|
run_func = partial(run_dist, world_size=world_size, port=free_port())
|
||
|
mp.spawn(run_func, nprocs=world_size)
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
test_grad_clip(2)
|