ColossalAI/colossalai/nn/parallel/utils.py

50 lines
1.4 KiB
Python
Raw Normal View History

import torch
import torch.distributed as dist
from colossalai.gemini.chunk import Chunk
from colossalai.tensor import ColoTensor
from colossalai.utils import get_current_device
def get_temp_total_chunk_on_cuda(chunk: Chunk):
if chunk.is_gathered:
return chunk.cuda_global_chunk
if chunk.cuda_shard is not None:
shard_temp = chunk.cuda_shard
else:
shard_temp = chunk.cpu_shard.to(get_current_device())
total_temp = torch.zeros(chunk.chunk_size, dtype=chunk.dtype, device=get_current_device())
gather_list = list(torch.chunk(input=total_temp, chunks=chunk.pg_size, dim=0))
dist.all_gather(tensor_list=gather_list, tensor=shard_temp, group=chunk.torch_pg)
return total_temp
def _add_param(model, name, param):
name_list = name.split('.')
module = model._modules[name_list[0]]
for i in range(1, len(name_list) - 1):
module = module._modules[name_list[i]]
module._parameters[name_list[-1]] = param
def convert_to_torch_module(gemini_ddp_model) -> torch.nn.Module:
"""convert_to_torch_module
Args:
gemini_ddp_model (GeminiDDP): a gemini ddp model
Returns:
torch.nn.Module: a torch model contains the params of gemini_ddp_model
"""
module = gemini_ddp_model.module
for n, p in module.named_parameters():
if isinstance(p, ColoTensor):
p.to_replicate_()
_add_param(module, n, p.data)
return module