mirror of https://github.com/hpcaitech/ColossalAI
233 lines
12 KiB
Python
233 lines
12 KiB
Python
|
import torch.nn as nn
|
||
|
|
||
|
import colossalai.shardformer.layer as col_nn
|
||
|
|
||
|
from .._utils import getattr_, setattr_
|
||
|
from .basepolicy import ModulePolicyDescription, Policy, SubModuleReplacementDescription
|
||
|
|
||
|
__all__ = [
|
||
|
'WhisperPolicy', 'WhisperModelPolicy', 'WhisperForConditionalGenerationPolicy', 'WhisperForAudioClassification'
|
||
|
]
|
||
|
|
||
|
|
||
|
class WhisperPolicy(Policy):
|
||
|
|
||
|
def config_sanity_check(self):
|
||
|
pass
|
||
|
|
||
|
def preprocess(self):
|
||
|
# reshape the embedding layer
|
||
|
r"""
|
||
|
Reshape the Embedding layer to make the embedding dimension divisible by world_size
|
||
|
"""
|
||
|
# TODO:
|
||
|
vocab_size = self.model.config.vocab_size
|
||
|
world_size = self.shard_config.tensor_parallel_size
|
||
|
if vocab_size % world_size != 0:
|
||
|
new_vocab_size = vocab_size + world_size - vocab_size % world_size
|
||
|
self.model.resize_token_embeddings(new_vocab_size)
|
||
|
return self.model
|
||
|
|
||
|
def module_policy(self):
|
||
|
from transformers.models.whisper.modeling_whisper import (
|
||
|
WhisperDecoder,
|
||
|
WhisperDecoderLayer,
|
||
|
WhisperEncoder,
|
||
|
WhisperEncoderLayer,
|
||
|
)
|
||
|
|
||
|
policy = {}
|
||
|
|
||
|
if self.shard_config.enable_tensor_parallelism:
|
||
|
policy[WhisperEncoderLayer] = ModulePolicyDescription(attribute_replacement={
|
||
|
"self_attn.embed_dim":
|
||
|
self.model.config.d_model // self.shard_config.tensor_parallel_size,
|
||
|
"self_attn.num_heads":
|
||
|
self.model.config.encoder_attention_heads // self.shard_config.tensor_parallel_size,
|
||
|
},
|
||
|
sub_module_replacement=[
|
||
|
SubModuleReplacementDescription(
|
||
|
suffix="self_attn.q_proj",
|
||
|
target_module=col_nn.Linear1D_Col,
|
||
|
),
|
||
|
SubModuleReplacementDescription(
|
||
|
suffix="self_attn.k_proj",
|
||
|
target_module=col_nn.Linear1D_Col,
|
||
|
),
|
||
|
SubModuleReplacementDescription(
|
||
|
suffix="self_attn.v_proj",
|
||
|
target_module=col_nn.Linear1D_Col,
|
||
|
),
|
||
|
SubModuleReplacementDescription(
|
||
|
suffix="self_attn.out_proj",
|
||
|
target_module=col_nn.Linear1D_Row,
|
||
|
),
|
||
|
SubModuleReplacementDescription(
|
||
|
suffix="fc1",
|
||
|
target_module=col_nn.Linear1D_Col,
|
||
|
),
|
||
|
SubModuleReplacementDescription(
|
||
|
suffix="fc2",
|
||
|
target_module=col_nn.Linear1D_Row,
|
||
|
),
|
||
|
])
|
||
|
|
||
|
policy[WhisperDecoderLayer] = ModulePolicyDescription(attribute_replacement={
|
||
|
"self_attn.embed_dim":
|
||
|
self.model.config.d_model // self.shard_config.tensor_parallel_size,
|
||
|
"self_attn.num_heads":
|
||
|
self.model.config.decoder_attention_heads // self.shard_config.tensor_parallel_size,
|
||
|
"encoder_attn.embed_dim":
|
||
|
self.model.config.d_model // self.shard_config.tensor_parallel_size,
|
||
|
"encoder_attn.num_heads":
|
||
|
self.model.config.encoder_attention_heads // self.shard_config.tensor_parallel_size,
|
||
|
},
|
||
|
sub_module_replacement=[
|
||
|
SubModuleReplacementDescription(
|
||
|
suffix="self_attn.q_proj",
|
||
|
target_module=col_nn.Linear1D_Col,
|
||
|
),
|
||
|
SubModuleReplacementDescription(
|
||
|
suffix="self_attn.k_proj",
|
||
|
target_module=col_nn.Linear1D_Col,
|
||
|
),
|
||
|
SubModuleReplacementDescription(
|
||
|
suffix="self_attn.v_proj",
|
||
|
target_module=col_nn.Linear1D_Col,
|
||
|
),
|
||
|
SubModuleReplacementDescription(
|
||
|
suffix="self_attn.out_proj",
|
||
|
target_module=col_nn.Linear1D_Row,
|
||
|
),
|
||
|
SubModuleReplacementDescription(
|
||
|
suffix="encoder_attn.q_proj",
|
||
|
target_module=col_nn.Linear1D_Col,
|
||
|
),
|
||
|
SubModuleReplacementDescription(
|
||
|
suffix="encoder_attn.k_proj",
|
||
|
target_module=col_nn.Linear1D_Col,
|
||
|
),
|
||
|
SubModuleReplacementDescription(
|
||
|
suffix="encoder_attn.v_proj",
|
||
|
target_module=col_nn.Linear1D_Col,
|
||
|
),
|
||
|
SubModuleReplacementDescription(
|
||
|
suffix="encoder_attn.out_proj",
|
||
|
target_module=col_nn.Linear1D_Row,
|
||
|
),
|
||
|
SubModuleReplacementDescription(
|
||
|
suffix="fc1",
|
||
|
target_module=col_nn.Linear1D_Col,
|
||
|
),
|
||
|
SubModuleReplacementDescription(
|
||
|
suffix="fc2",
|
||
|
target_module=col_nn.Linear1D_Row,
|
||
|
),
|
||
|
])
|
||
|
|
||
|
policy[WhisperDecoder] = ModulePolicyDescription(sub_module_replacement=[
|
||
|
SubModuleReplacementDescription(
|
||
|
suffix="embed_tokens",
|
||
|
target_module=col_nn.VocabParallelEmbedding1D,
|
||
|
),
|
||
|
])
|
||
|
|
||
|
# optimization configuration
|
||
|
if self.shard_config.enable_fused_normalization:
|
||
|
# Handle encoder layer
|
||
|
self.append_or_create_submodule_replacement(description=[
|
||
|
SubModuleReplacementDescription(
|
||
|
suffix="self_attn_layer_norm",
|
||
|
target_module=col_nn.FusedLayerNorm,
|
||
|
),
|
||
|
SubModuleReplacementDescription(
|
||
|
suffix="final_layer_norm",
|
||
|
target_module=col_nn.FusedLayerNorm,
|
||
|
)
|
||
|
],
|
||
|
policy=policy,
|
||
|
target_key=WhisperEncoderLayer)
|
||
|
|
||
|
# Handle decoder layer
|
||
|
self.append_or_create_submodule_replacement(description=[
|
||
|
SubModuleReplacementDescription(
|
||
|
suffix="self_attn_layer_norm",
|
||
|
target_module=col_nn.FusedLayerNorm,
|
||
|
),
|
||
|
SubModuleReplacementDescription(
|
||
|
suffix="final_layer_norm",
|
||
|
target_module=col_nn.FusedLayerNorm,
|
||
|
)
|
||
|
],
|
||
|
policy=policy,
|
||
|
target_key=WhisperDecoderLayer)
|
||
|
|
||
|
# handle encoder layer
|
||
|
self.append_or_create_submodule_replacement(description=[
|
||
|
SubModuleReplacementDescription(
|
||
|
suffix="layer_norm",
|
||
|
target_module=col_nn.FusedLayerNorm,
|
||
|
)
|
||
|
],
|
||
|
policy=policy,
|
||
|
target_key=WhisperEncoder)
|
||
|
|
||
|
# handle decoder layer
|
||
|
self.append_or_create_submodule_replacement(description=[
|
||
|
SubModuleReplacementDescription(
|
||
|
suffix="layer_norm",
|
||
|
target_module=col_nn.FusedLayerNorm,
|
||
|
)
|
||
|
],
|
||
|
policy=policy,
|
||
|
target_key=WhisperDecoder)
|
||
|
return policy
|
||
|
|
||
|
def add_lm_head_policy(self, base_policy):
|
||
|
from transformers.models.whisper.modeling_whisper import WhisperForConditionalGeneration
|
||
|
|
||
|
# optimize for tensor parallelism
|
||
|
if self.shard_config.enable_tensor_parallelism:
|
||
|
self.append_or_create_submodule_replacement(description=SubModuleReplacementDescription(
|
||
|
suffix="proj_out", target_module=col_nn.Linear1D_Col, kwargs={"gather_output": True}),
|
||
|
policy=base_policy,
|
||
|
target_key=WhisperForConditionalGeneration)
|
||
|
|
||
|
return base_policy
|
||
|
|
||
|
def postprocess(self):
|
||
|
return self.model
|
||
|
|
||
|
|
||
|
# WhisperModel
|
||
|
class WhisperModelPolicy(WhisperPolicy):
|
||
|
|
||
|
def __init__(self) -> None:
|
||
|
super().__init__()
|
||
|
|
||
|
|
||
|
# WhisperForConditionalGeneration
|
||
|
class WhisperForConditionalGenerationPolicy(WhisperPolicy):
|
||
|
|
||
|
def __init__(self) -> None:
|
||
|
super().__init__()
|
||
|
|
||
|
def module_policy(self):
|
||
|
module_policy = super().module_policy()
|
||
|
module_policy = self.add_lm_head_policy(module_policy)
|
||
|
return module_policy
|
||
|
|
||
|
def postprocess(self):
|
||
|
binding_map = {"model.decoder.embed_tokens.weight": "proj_out.weight"}
|
||
|
for k, v in binding_map.items():
|
||
|
param = getattr_(self.model, k)
|
||
|
setattr_(self.model, v, param)
|
||
|
return self.model
|
||
|
|
||
|
|
||
|
# WhisperForAudioClassification
|
||
|
class WhisperForAudioClassificationPolicy(WhisperPolicy):
|
||
|
|
||
|
def __init__(self) -> None:
|
||
|
super().__init__()
|