ColossalAI/colossalai/shardformer/policies/base_policy.py

234 lines
9.4 KiB
Python
Raw Normal View History

# part of code modified from https://github.com/tunib-ai/parallelformers
from abc import ABC, abstractmethod
from dataclasses import dataclass
2023-07-05 06:16:55 +00:00
from typing import Any, Callable, Dict, List, Optional, Union
import numpy as np
import torch.nn as nn
2023-07-05 06:16:55 +00:00
from torch import Tensor
from torch.nn import Module
from colossalai.pipeline.stage_manager import PipelineStageManager
from ..shard.shard_config import ShardConfig
__all__ = ["ParallelModule", "SubModuleReplacementDescription", "ModulePolicyDescription", "Policy"]
class ParallelModule():
def __init__(self):
pass
@dataclass
class SubModuleReplacementDescription:
r"""
Describe how a submodule will be replaced
Args:
suffix (str): used to get the submodule object
target_module (ParallelModule): specifies the module class used to replace to submodule
kwargs (Dict[str, Any]): the dictionary used to pass extra arguments to the `ParallelModule.from_native_module` method.
ignore_if_not_exist (bool): if the submodule does not exist, ignore it or raise an exception
"""
suffix: str
target_module: ParallelModule
kwargs: Dict[str, Any] = None
ignore_if_not_exist: bool = False
@dataclass
class ModulePolicyDescription:
r"""
Describe how the attributes and parameters will be transformed in a policy.
Args:
attribute_replacement (Dict[str, Any]): key is the attribute name, value is the attribute value after sharding
param_replacement (List[Callable]): a list of functions to perform in-place param replacement. The function
must receive only one arguments: module. One example is
```python
def example_replace_weight(module: torch.nn.Module):
weight = module.weight
new_weight = shard_rowwise(weight, process_group)
module.weight = torch.nn.Parameter(new_weight)
```
sub_module_replacement (List[SubModuleReplacementDescription]): each element in the list is a ParamReplacementDescription
object which specifies the module to be replaced and the target module used to replacement.
method_replace (Dict[str, Callable]): key is the method name, value is the method for replacement
"""
attribute_replacement: Dict[str, Any] = None
param_replacement: List[Callable] = None
sub_module_replacement: List[SubModuleReplacementDescription] = None
method_replacement: Dict[str, Callable] = None
class Policy(ABC):
r"""
The base class for all the policies. For each different model, it should have a different policy class,
like BertPolicy for Bert Model or OPTPolicy for OPT model.
Shardformer has provided many built-in sharding policies for the mainstream models. You can use the
built-in policies by setting `policy = None`, which is already the default argument for `Shardformer.optimize`.
If you want to define your own policy, you can inherit from this class and overwrite the methods you want to modify.
"""
def __init__(self) -> None:
2023-07-05 06:16:55 +00:00
self.shard_config: Optional[ShardConfig] = None
self.model: Optional[Module] = None
def set_model(self, model: nn.Module) -> None:
r"""
Set model as an attribute of the Policy object so that we can access the model's attributes.
Args:
model (:class:`nn.Module`): The model to be perform
"""
self.model = model
def set_shard_config(self, shard_config: ShardConfig) -> None:
r"""
Set shard config as an attribute of the Policy object.
Args:
shard_config (:class:`ShardConfig`): The shard config to be perform
"""
self.shard_config = shard_config
self.config_sanity_check()
2023-07-05 06:16:55 +00:00
@property
def pipeline_stage_manager(self) -> Optional[PipelineStageManager]:
if self.shard_config is not None:
return self.shard_config.pipeline_stage_manager
return None
@abstractmethod
def config_sanity_check(self):
"""
Check if the shard config is valid for the model. Raise an exception if the config is invalid.
This method is made abstractmethod with no default implementation because we want to the policy writer
to take note of the feature supported by his/her model and policy.
"""
pass
@abstractmethod
def preprocess(self) -> nn.Module:
r"""
Perform some preprocessing of the model, like reshaping the embedding layer.
"""
pass
@abstractmethod
def module_policy(self) -> Dict[Union[str, nn.Module], ModulePolicyDescription]:
r"""
This method returns the module policy, which is a dictionary. The key is the module name or the module object,
and the value is the ModulePolicyDescription object. The ModulePolicyDescription object describes how the module
will be transformed.
"""
pass
@abstractmethod
def postprocess(self) -> nn.Module:
r"""
Perform some postprocessing of the model, like binding the weight of embedding layer with
the classifier layer
"""
pass
def append_or_create_submodule_replacement(
self, description: Union[SubModuleReplacementDescription,
List[SubModuleReplacementDescription]], policy: Dict[Union[str, nn.Module],
ModulePolicyDescription],
target_key: Union[str, nn.Module]) -> Dict[Union[str, nn.Module], ModulePolicyDescription]:
r"""
Append or create a new submodule replacement description to the policy for the given key.
Args:
submodule_replace_desc (Union[SubModuleReplacementDescription, List[SubModuleReplacementDescription]]): the submodule replacement description to be appended
policy (Dict[Union[str, nn.Module], ModulePolicyDescription]): the policy to be updated
target_key (Union[str, nn.Module]): the key of the policy to be updated
"""
# convert to list
if isinstance(description, SubModuleReplacementDescription):
description = [description]
# append or create a new description
if target_key in policy:
2023-07-14 01:51:53 +00:00
if policy[target_key].sub_module_replacement is None:
policy[target_key].sub_module_replacement = description
else:
policy[target_key].sub_module_replacement.extend(description)
else:
policy[target_key] = ModulePolicyDescription(sub_module_replacement=description)
return policy
2023-07-05 06:16:55 +00:00
def append_or_create_method_replacement(
self, description: Dict[str, Callable], policy: Dict[Union[str, nn.Module], ModulePolicyDescription],
target_key: Union[str, nn.Module]) -> Dict[Union[str, nn.Module], ModulePolicyDescription]:
r"""
Append or create a new method replacement description to the policy for the given key.
Args:
description (Union[SubModuleReplacementDescription, List[SubModuleReplacementDescription]]): the submodule replacement description to be appended
policy (Dict[Union[str, nn.Module], ModulePolicyDescription]): the policy to be updated
target_key (Union[str, nn.Module]): the key of the policy to be updated
"""
if target_key in policy:
2023-07-14 01:51:53 +00:00
if policy[target_key].method_replacement is None:
policy[target_key].method_replacement = description
else:
policy[target_key].method_replacement.update(description)
else:
policy[target_key] = ModulePolicyDescription(method_replacement=description)
return policy
2023-07-05 06:16:55 +00:00
def get_held_layers(self) -> List[Module]:
"""Get layers that should be held in current stage. This method should be implemented by subclass.
Returns:
List[Module]: List of layers that should be hold in current stage
"""
raise NotImplementedError
def get_shared_params(self) -> List[Dict[int, Tensor]]:
"""Get parameters that should be shared across stages. This method should be implemented by subclass.
Returns:
List[Dict[int, Tensor]]: List of parameters that should be shared across stages. E.g. [{0: module.model.embed_tokens.weight, 3: module.lm_head.weight}]
"""
return []
@staticmethod
def distribute_layers(num_layers: int, num_stages: int) -> List[int]:
"""Divide layers into stages
"""
quotient = num_layers // num_stages
remainder = num_layers % num_stages
# calculate the num_layers per stage
layers_per_stage = [quotient] * num_stages
# deal with the rest layers
if remainder > 0:
start_position = num_stages // 2 - remainder // 2
for i in range(start_position, start_position + remainder):
layers_per_stage[i] += 1
return layers_per_stage
@staticmethod
def get_stage_index(layers_per_stage: List[int], stage: int) -> List[int]:
"""
get the start index and end index of layers for each stage.
"""
num_layers_per_stage_accumulated = np.insert(np.cumsum(layers_per_stage), 0, 0)
start_idx = num_layers_per_stage_accumulated[stage]
end_idx = num_layers_per_stage_accumulated[stage + 1]
return [start_idx, end_idx]