ColossalAI/colossalai/auto_parallel/meta_profiler/meta_registry/activation.py

86 lines
4.0 KiB
Python
Raw Normal View History

from typing import Callable, List, Tuple
import torch
from colossalai._analyzer._subclasses.flop_tensor import ewise_flop_counter as elementwise_flop_counter
from colossalai._analyzer.fx.node_util import compute_size_in_bytes as activation_size
from colossalai.auto_parallel.tensor_shard.sharding_strategy import MemoryCost, OperationDataType, TrainCycleItem
from ..registry import meta_register
__all__ = ["elementwise_meta_info"]
def elementwise_meta_info(temp_mem_scale: float = 0, buffer_mem_scale: float = 0) -> Callable:
"""This is a function to create the meta information generator for elementwise operations
Args:
temp_mem_scale (float, optional): temp memory scaling factor for backward. Defaults to 0.
buffer_mem_scale (float, optional): buffer memory scaling factor for forward. Defaults to 0.
Returns:
Callable: meta information generator
"""
def meta_func(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]:
input_tensor = next(
filter(
lambda x:
(x.type == OperationDataType.ARG or x.type == OperationDataType.PARAM) and x.name != 'softmax_dim',
args)).data
output_tensor = next(filter(lambda x: x.type == OperationDataType.OUTPUT, args)).data
is_inplace = 1 if kwargs.get('inplace', False) else 0
flop_counter = elementwise_flop_counter(1, 0)
# calculate compute cost
fwd_compute_cost = flop_counter([input_tensor], [output_tensor])
bwd_compute_cost = flop_counter([output_tensor], [input_tensor])
compute_cost = TrainCycleItem(fwd=fwd_compute_cost,
bwd=bwd_compute_cost,
total=fwd_compute_cost + bwd_compute_cost)
# calculate memory cost
# NOTE: currently in SPMD solver we always believe that there will be a new tensor created in forward
# NOTE: if in_place is True, we will not create a new tensor in forward
fwd_memory_cost = MemoryCost(activation=activation_size(input_tensor) * (2 - is_inplace),
parameter=0,
temp=0,
buffer=activation_size(input_tensor) * buffer_mem_scale)
# temp_mem_scale is for situation like softmax backward
# the buffer will be removed during backward phase
bwd_memory_cost = MemoryCost(
activation=activation_size(input_tensor) - activation_size(input_tensor) * buffer_mem_scale,
parameter=0,
temp=activation_size(input_tensor) * temp_mem_scale + activation_size(input_tensor) * buffer_mem_scale,
buffer=0)
# total cost is the sum of forward and backward cost
total_cost = MemoryCost(activation=fwd_memory_cost.activation + bwd_memory_cost.activation,
parameter=fwd_memory_cost.parameter + bwd_memory_cost.parameter,
temp=fwd_memory_cost.temp + bwd_memory_cost.temp,
buffer=fwd_memory_cost.buffer + bwd_memory_cost.buffer)
memory_cost = TrainCycleItem(fwd=fwd_memory_cost, bwd=bwd_memory_cost, total=total_cost)
# store fwd_in, fwd_buffer, fwd_out
fwd_in = []
fwd_buffer = [torch.zeros_like(output_tensor, device='meta')]
fwd_out = [torch.zeros_like(output_tensor, device='meta')]
return compute_cost, memory_cost, fwd_in, fwd_buffer, fwd_out
return meta_func
# register meta information
# (0, 0)
meta_register.register([torch.nn.ReLU, torch.nn.functional.relu, torch.tanh])(elementwise_meta_info(0, 0))
# (1, 0)
meta_register.register([torch.nn.Softmax, torch.nn.functional.softmax])(elementwise_meta_info(1, 0))
# (0, 0.25) for dropout, the buffer is in bool type so that the buffer memory cost is 0.25 times of input tensor
meta_register.register([torch.nn.Dropout, torch.nn.functional.dropout])(elementwise_meta_info(0, 0.25))