2022-04-28 09:45:06 +00:00
|
|
|
import torch
|
|
|
|
from colossalai.context.parallel_mode import ParallelMode
|
|
|
|
from colossalai.tensor import ColoTensor
|
|
|
|
|
|
|
|
from functools import partial
|
|
|
|
|
|
|
|
import colossalai
|
|
|
|
import pytest
|
|
|
|
import torch
|
|
|
|
import torch.multiprocessing as mp
|
2022-05-06 03:16:40 +00:00
|
|
|
from colossalai.testing import rerun_if_address_is_in_use
|
2022-04-28 09:45:06 +00:00
|
|
|
from colossalai.utils.cuda import get_current_device
|
|
|
|
from colossalai.utils import free_port
|
|
|
|
from colossalai.core import global_context as gpc
|
|
|
|
from colossalai.tensor import TensorSpec, ComputePattern, ParallelAction
|
|
|
|
|
|
|
|
from _utils import check_equal, replace_parameter_add_grad, broadcast_tensor_chunk
|
|
|
|
|
|
|
|
def run_embedding_tp1d_col_test():
|
|
|
|
device = get_current_device()
|
|
|
|
dtype = torch.float32
|
|
|
|
DEPTH = gpc.get_world_size(ParallelMode.PARALLEL_1D)
|
|
|
|
num_embeddings = 12
|
|
|
|
embedding_dim = 32
|
|
|
|
|
|
|
|
local_rank = gpc.get_local_rank(ParallelMode.PARALLEL_1D)
|
|
|
|
|
|
|
|
layer_master = torch.nn.Embedding(num_embeddings, embedding_dim)
|
|
|
|
layer = torch.nn.Embedding(num_embeddings, embedding_dim)
|
|
|
|
|
|
|
|
A_master = torch.tensor((0,3,6,9), device=device)
|
|
|
|
A = broadcast_tensor_chunk(A_master, chunk_size=1)
|
|
|
|
|
|
|
|
W_shape = (num_embeddings, embedding_dim)
|
|
|
|
W_master = torch.randn(W_shape, dtype=dtype, device=device)
|
|
|
|
W = broadcast_tensor_chunk(W_master, chunk_size=1)
|
|
|
|
W.requires_grad = True
|
|
|
|
|
|
|
|
# replace the torch nn.Parameters with ColoTensor
|
|
|
|
sharded_weight = ColoTensor.init_from_torch_tensor(W)
|
|
|
|
parallel_action_list = [
|
|
|
|
ParallelAction(priority=1, compute_pattern=ComputePattern.TP1DCol_Embedding,
|
|
|
|
parallel_mode=ParallelMode.PARALLEL_1D)
|
|
|
|
]
|
|
|
|
spec = TensorSpec(parallel_action_list)
|
|
|
|
sharded_weight.set_spec(spec) # reshard
|
|
|
|
replace_parameter_add_grad(layer, sharded_weight)
|
|
|
|
out = layer(A)
|
|
|
|
|
|
|
|
replace_parameter_add_grad(layer_master, W_master)
|
|
|
|
C_master = layer_master(A_master)
|
|
|
|
C = C_master.clone()
|
|
|
|
|
|
|
|
check_equal(out, C)
|
|
|
|
|
|
|
|
grad_shape = C_master.shape
|
|
|
|
grad_master = torch.randn(grad_shape, dtype=dtype, device=get_current_device())
|
|
|
|
grad = broadcast_tensor_chunk(grad_master, chunk_size=1)
|
|
|
|
out.backward(grad)
|
|
|
|
|
|
|
|
grad_master = grad_master.clone()
|
|
|
|
C_master.backward(grad_master)
|
|
|
|
|
|
|
|
W_grad = W_master.grad
|
|
|
|
W_grad = torch.chunk(W_grad, DEPTH, dim=-1)[local_rank]
|
|
|
|
check_equal(W_grad, layer.weight.grad)
|
|
|
|
|
2022-04-29 06:10:05 +00:00
|
|
|
def run_embedding_tp1d_row_test():
|
|
|
|
device = get_current_device()
|
|
|
|
dtype = torch.float32
|
|
|
|
DEPTH = gpc.get_world_size(ParallelMode.PARALLEL_1D)
|
|
|
|
num_embeddings = 12
|
|
|
|
embedding_dim = 32
|
|
|
|
|
|
|
|
local_rank = gpc.get_local_rank(ParallelMode.PARALLEL_1D)
|
|
|
|
|
|
|
|
layer_master = torch.nn.Embedding(num_embeddings, embedding_dim)
|
|
|
|
layer = torch.nn.Embedding(num_embeddings, embedding_dim)
|
|
|
|
|
|
|
|
A_master = torch.tensor((0,3,6,9), device=device)
|
|
|
|
A = broadcast_tensor_chunk(A_master, chunk_size=1)
|
|
|
|
|
|
|
|
W_shape = (num_embeddings, embedding_dim)
|
|
|
|
W_master = torch.randn(W_shape, dtype=dtype, device=device)
|
|
|
|
W = broadcast_tensor_chunk(W_master, chunk_size=1)
|
|
|
|
W.requires_grad = True
|
|
|
|
|
|
|
|
# replace the torch nn.Parameters with ColoTensor
|
|
|
|
sharded_weight = ColoTensor.init_from_torch_tensor(W)
|
|
|
|
parallel_action_list = [
|
|
|
|
ParallelAction(priority=1, compute_pattern=ComputePattern.TP1DRow_Embedding,
|
|
|
|
parallel_mode=ParallelMode.PARALLEL_1D)
|
|
|
|
]
|
|
|
|
spec = TensorSpec(parallel_action_list)
|
|
|
|
sharded_weight.set_spec(spec) # reshard
|
|
|
|
replace_parameter_add_grad(layer, sharded_weight)
|
|
|
|
out = layer(A)
|
|
|
|
|
|
|
|
replace_parameter_add_grad(layer_master, W_master)
|
|
|
|
C_master = layer_master(A_master)
|
|
|
|
C = C_master.clone()
|
|
|
|
|
|
|
|
check_equal(out, C)
|
|
|
|
|
|
|
|
grad_shape = C_master.shape
|
|
|
|
grad_master = torch.randn(grad_shape, dtype=dtype, device=get_current_device())
|
|
|
|
grad = broadcast_tensor_chunk(grad_master, chunk_size=1)
|
|
|
|
out.backward(grad)
|
|
|
|
|
|
|
|
grad_master = grad_master.clone()
|
|
|
|
C_master.backward(grad_master)
|
|
|
|
|
|
|
|
W_grad = W_master.grad
|
|
|
|
W_grad = torch.chunk(W_grad, DEPTH, dim=0)[local_rank]
|
|
|
|
check_equal(W_grad, layer.weight.grad)
|
|
|
|
|
2022-04-28 09:45:06 +00:00
|
|
|
def run_dist(rank, world_size, port):
|
|
|
|
config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),))
|
|
|
|
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
|
|
|
run_embedding_tp1d_col_test()
|
2022-04-29 06:10:05 +00:00
|
|
|
run_embedding_tp1d_row_test()
|
2022-04-28 09:45:06 +00:00
|
|
|
|
|
|
|
@pytest.mark.dist
|
2022-05-06 03:16:40 +00:00
|
|
|
@pytest.mark.parametrize('world_size', [1, 4])
|
2022-04-28 09:45:06 +00:00
|
|
|
@rerun_if_address_is_in_use()
|
|
|
|
def test_embedding_1d(world_size):
|
|
|
|
run_func = partial(run_dist, world_size=world_size, port=free_port())
|
|
|
|
mp.spawn(run_func, nprocs=world_size)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
test_embedding_1d()
|