ColossalAI/tests/test_gemini/update/test_fwd_bwd.py

106 lines
3.9 KiB
Python
Raw Normal View History

from functools import partial
import pytest
import torch
import torch.multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel as DDP
import colossalai
from colossalai.amp import convert_to_apex_amp
from colossalai.gemini.chunk import ChunkManager, search_chunk_configuration
from colossalai.gemini.gemini_mgr import GeminiManager
from colossalai.nn.parallel import ZeroDDP
from colossalai.tensor import ProcessGroup
from colossalai.testing import parameterize, rerun_if_address_is_in_use
from colossalai.utils import free_port
from colossalai.utils.cuda import get_current_device
from colossalai.utils.model.colo_init_context import ColoInitContext
from tests.components_to_test.registry import non_distributed_component_funcs
from tests.test_tensor.common_utils import debug_print, set_seed, tensor_equal, tensor_shard_equal
def check_grad(model: ZeroDDP, torch_model: torch.nn.Module):
chunk_manager = model.chunk_manager
param_list = [p for p in model.parameters()]
chunk_list = chunk_manager.get_chunks(param_list)
for chunk in chunk_list:
chunk_manager.access_chunk(chunk)
for (p0, p1) in zip(model.parameters(), torch_model.parameters()):
assert torch.allclose(p0, p1.grad, atol=1e-3, rtol=1e-5), "{}".format(torch.max(torch.abs(p0 - p1.grad)).item())
def run_fwd_bwd(model, criterion, optimizer, input_ids):
optimizer.zero_grad()
logits = model(input_ids)
logits = logits.float()
loss = criterion(logits, input_ids)
optimizer.backward(loss)
return logits
@parameterize('placement_policy', ['cuda', 'cpu', 'auto', 'const'])
@parameterize('keep_gather', [False, True])
def exam_gpt_fwd_bwd(placement_policy, keep_gather):
set_seed(42)
get_components_func = non_distributed_component_funcs.get_callable('gpt2')
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
with ColoInitContext(device=get_current_device()):
model = model_builder()
torch_model = model_builder().cuda()
for torch_p, p in zip(torch_model.parameters(), model.parameters()):
torch_p.data.copy_(p.data)
world_size = torch.distributed.get_world_size()
config_dict, _ = search_chunk_configuration(model, search_range_mb=1, search_interval_byte=100)
config_dict[world_size]['chunk_size'] = 5000
config_dict[world_size]['keep_gathered'] = keep_gather
chunk_manager = ChunkManager(config_dict)
gemini_manager = GeminiManager(placement_policy, chunk_manager)
model = ZeroDDP(model, gemini_manager, pin_memory=True)
pg = ProcessGroup()
amp_config = dict(opt_level='O2', keep_batchnorm_fp32=False, loss_scale=1)
torch_optim = torch.optim.Adam(torch_model.parameters(), lr=1e-3)
torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config)
torch_model = DDP(torch_model, device_ids=[pg.rank()], process_group=pg.dp_process_group())
model.eval()
torch_model.eval()
set_seed(pg.dp_local_rank())
for i, (input_ids, label) in enumerate(train_dataloader):
if i > 0:
break
logits = model(input_ids)
logits = logits.float()
loss = criterion(logits, input_ids)
model.backward(loss)
torch_logits = run_fwd_bwd(torch_model, criterion, torch_optim, input_ids)
assert torch.allclose(logits, torch_logits, rtol=0), "{} {} {}".format(
torch.max(torch.abs(logits - torch_logits)).item(), logits, torch_logits)
check_grad(model, torch_model)
def run_dist(rank, world_size, port):
config = {}
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
exam_gpt_fwd_bwd()
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [1, 4])
@rerun_if_address_is_in_use()
def test_gpt(world_size):
run_func = partial(run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_gpt(4)