mirror of https://github.com/hpcaitech/ColossalAI
47 lines
1.5 KiB
Python
47 lines
1.5 KiB
Python
|
import numpy as np
|
||
|
import torch
|
||
|
|
||
|
from colossalai.gemini.memory_tracer.param_tracer_wrapper import ParamTracerWrapper
|
||
|
from colossalai.utils.model.colo_init_context import ColoInitContext
|
||
|
from tests.components_to_test.registry import non_distributed_component_funcs
|
||
|
|
||
|
def run_fwd_bwd(model, data, label, criterion, enable_autocast=False, dtype=torch.half):
|
||
|
with torch.cuda.amp.autocast(enabled=enable_autocast):
|
||
|
if criterion:
|
||
|
y = model(data)
|
||
|
loss = criterion(y, label)
|
||
|
else:
|
||
|
loss = model(data, label)
|
||
|
loss = loss.to(dtype)
|
||
|
model.backward(loss)
|
||
|
|
||
|
def run_param_wrapper_testing():
|
||
|
test_models = ['simple_net']
|
||
|
|
||
|
for model_name in test_models:
|
||
|
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||
|
model_builder, train_dataloader, _, _, criterion = get_components_func()
|
||
|
|
||
|
with ColoInitContext(device=torch.device('cpu')):
|
||
|
model = model_builder(checkpoint=False)
|
||
|
|
||
|
model = ParamTracerWrapper(model)
|
||
|
|
||
|
for i, (data, label) in enumerate(train_dataloader):
|
||
|
if i > 1:
|
||
|
break
|
||
|
data = data.cuda()
|
||
|
label = label.cuda()
|
||
|
|
||
|
run_fwd_bwd(model, data, label, criterion, False)
|
||
|
|
||
|
cuda_non_model_data_list = np.array(model.param_op_hook._non_model_data_list) / 1024 ** 2
|
||
|
print("cuda_non_model_data_list", len(cuda_non_model_data_list))
|
||
|
# print(model.param_op_hook._non_model_data_list)
|
||
|
|
||
|
del model
|
||
|
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
run_param_wrapper_testing()
|