ColossalAI/tests/test_shardformer/test_model/test_shard_deepseek.py

197 lines
6.5 KiB
Python
Raw Normal View History

[FP8] rebase main (#5963) * add SimPO * fix dataloader * remove debug code * add orpo * fix style * fix colossalai, transformers version * fix colossalai, transformers version * fix colossalai, transformers version * fix torch colossalai version * update transformers version * [shardformer] DeepseekMoE support (#5871) * [Feature] deepseek moe expert parallel implement * [misc] fix typo, remove redundant file (#5867) * [misc] fix typo * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [Feature] deepseek support & unit test * [misc] remove debug code & useless print * [misc] fix typos (#5872) * [Feature] remove modeling file, use auto config. (#5884) * [misc] fix typos * [Feature] deepseek support via auto model, remove modeling file * [misc] delete useless file * [misc] fix typos * [Deepseek] remove redundant code (#5888) * [misc] fix typos * [Feature] deepseek support via auto model, remove modeling file * [misc] delete useless file * [misc] fix typos * [misc] remove redundant code * [Feature/deepseek] resolve comment. (#5889) * [misc] fix typos * [Feature] deepseek support via auto model, remove modeling file * [misc] delete useless file * [misc] fix typos * [misc] remove redundant code * [misc] mv module replacement into if branch * [misc] add some warning message and modify some code in unit test * [misc] fix typos --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [Hoxfix] Fix CUDA_DEVICE_MAX_CONNECTIONS for comm overlap Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [Feat] Diffusion Model(PixArtAlpha/StableDiffusion3) Support (#5838) * Diffusion Model Inference support * Stable Diffusion 3 Support * pixartalpha support * [HotFix] CI,import,requirements-test for #5838 (#5892) * [Hot Fix] CI,import,requirements-test --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [Feature] Enable PP + SP for llama (#5868) * fix cross-PP-stage position id length diff bug * fix typo * fix typo * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * use a one cross entropy func for all shardformer models --------- Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [ShardFormer] Add Ulysses Sequence Parallelism support for Command-R, Qwen2 and ChatGLM (#5897) * add benchmark for sft, dpo, simpo, orpo. Add benchmarking result. Support lora with gradient checkpoint * fix style * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix eval * hotfix citation * [zero] support all-gather overlap (#5898) * [zero] support all-gather overlap * [zero] add overlap all-gather flag * [misc] fix typo * [zero] update api * fix orpo cross entropy loss * [Auto Parallel]: Speed up intra-op plan generation by 44% (#5446) * Remove unnecessary calls to deepcopy * Build DimSpec's difference dict only once This change considerably speeds up construction speed of DimSpec objects. The difference_dict is the same for each DimSpec object, so a single copy of it is enough. * Fix documentation of DimSpec's difference method * [ShardFormer] fix qwen2 sp (#5903) * [compatibility] support torch 2.2 (#5875) * Support Pytorch 2.2.2 * keep build_on_pr file and update .compatibility * fix object_to_tensor usage when torch>=2.3.0 (#5820) * [misc] support torch2.3 (#5893) * [misc] support torch2.3 * [devops] update compatibility ci * [devops] update compatibility ci * [devops] add debug * [devops] add debug * [devops] add debug * [devops] add debug * [devops] remove debug * [devops] remove debug * [release] update version (#5912) * [plugin] support all-gather overlap for hybrid parallel (#5919) * [plugin] fixed all-gather overlap support for hybrid parallel * add kto * fix style, add kto data sample * [Examples] Add lazy init to OPT and GPT examples (#5924) Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [ColossalChat] Hotfix for ColossalChat (#5910) * add ignore and tiny llama * fix path issue * run style * fix issue * update bash * add ignore and tiny llama * fix path issue * run style * fix issue * update bash * fix ddp issue * add Qwen 1.5 32B * refactor tokenization * [FIX BUG] UnboundLocalError: cannot access local variable 'default_conversation' where it is not associated with a value (#5931) * cannot access local variable 'default_conversation' where it is not associated with a value set default value for 'default_conversation' * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * fix test data * refactor evaluation * remove real data path * remove real data path * Add n_fused as an input from native_module (#5894) * [FIX BUG] convert env param to int in (#5934) * [Hotfix] Fix ZeRO typo #5936 Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [Feature] Add a switch to control whether the model checkpoint needs to be saved after each epoch ends (#5941) * Add a switch to control whether the model checkpoint needs to be saved after each epoch ends * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * fix style * fix style * fix style * [shardformer] hotfix attn mask (#5945) * [shardformer] hotfix attn mask (#5947) * [Feat] Distrifusion Acceleration Support for Diffusion Inference (#5895) * Distrifusion Support source * comp comm overlap optimization * sd3 benchmark * pixart distrifusion bug fix * sd3 bug fix and benchmark * generation bug fix * naming fix * add docstring, fix counter and shape error * add reference * readme and requirement * [zero] hotfix update master params (#5951) * [release] update version (#5952) * [Chat] Fix lora (#5946) * fix merging * remove filepath * fix style * Update README.md (#5958) * [hotfix] Remove unused plan section (#5957) * remove readme * fix readme * update * [test] add mixtral for sequence classification * [test] add mixtral transformer test * [moe] fix plugin * [test] mixtra pp shard test * [chore] handle non member group * [zero] solve hang * [test] pass mixtral shardformer test * [moe] implement transit between non moe tp and ep * [zero] solve hang * [misc] solve booster hang by rename the variable * solve hang when parallel mode = pp + dp * [moe] implement submesh initialization * [moe] add mixtral dp grad scaling when not all experts are activated * [chore] manually revert unintended commit * [chore] trivial fix * [chore] arg pass & remove drop token * [test] add mixtral modelling test * [moe] implement tp * [moe] test deepseek * [moe] clean legacy code * [Feature] MoE Ulysses Support (#5918) * moe sp support * moe sp bug solve * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [chore] minor fix * [moe] init moe plugin comm setting with sp * moe sp + ep bug fix * [moe] finalize test (no pp) * [moe] full test for deepseek and mixtral (pp + sp to fix) * [chore] minor fix after rebase * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [chore] solve moe ckpt test failure and some other arg pass failure * [moe] remove ops * [test] fix test: test_zero1_2 * [bug] fix: somehow logger hangs the program * [moe] deepseek moe sp support * [test] add check * [deepseek] replace attn (a workaround for bug in transformers) * [misc] skip redunant test * [misc] remove debug/print code * [moe] refactor mesh assignment * Revert "[moe] implement submesh initialization" This reverts commit 2f9bce6686d1415a83d5726dc5ff02222c742582. * [chore] change moe_pg_mesh to private * [misc] remove incompatible test config * [misc] fix ci failure: change default value to false in moe plugin * [misc] remove useless condition * [chore] docstring * [moe] remove force_overlap_comm flag and add warning instead * [doc] add MoeHybridParallelPlugin docstring * [moe] solve dp axis issue * [chore] remove redundant test case, print string & reduce test tokens * [feat] Dist Loader for Eval (#5950) * support auto distributed data loader * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * support auto distributed data loader * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix tp error * remove unused parameters * remove unused * update inference * update docs * update inference --------- Co-authored-by: Michelle <qianranma8@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [lora] lora support hybrid parallel plugin (#5956) * lora support hybrid plugin * fix * fix * fix * fix * fp8 operators for compressed communication cast_to_fp8, cast_from_fp8, all_reduce_fp8 * fix scaling algorithm in FP8 casting * support fp8 communication in pipeline parallelism * add fp8_communication flag in the script * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix typo * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * shardformer fp8 * fix rebase * remove all to all * fix shardformer fp8 communication training degradation * [fp8] support all-gather flat tensor (#5932) * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * Update low_level_optim.py --------- Co-authored-by: YeAnbang <anbangy2@outlook.com> Co-authored-by: Haze188 <haze188@qq.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu> Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com> Co-authored-by: Guangyao Zhang <xjtu521@qq.com> Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com> Co-authored-by: Hongxin Liu <lhx0217@gmail.com> Co-authored-by: Stephan Kö <stephankoe@users.noreply.github.com> Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com> Co-authored-by: Tong Li <tong.li352711588@gmail.com> Co-authored-by: zhurunhua <1281592874@qq.com> Co-authored-by: Insu Jang <insujang@umich.edu> Co-authored-by: Gao, Ruiyuan <905370712@qq.com> Co-authored-by: hxwang <wang1570@e.ntu.edu.sg> Co-authored-by: Michelle <qianranma8@gmail.com> Co-authored-by: Wang Binluo <32676639+wangbluo@users.noreply.github.com> Co-authored-by: HangXu <hangxu0304@gmail.com>
2024-08-06 08:29:37 +00:00
import os
import shutil
from copy import deepcopy
from typing import Tuple
import pytest
import torch
import torch.distributed
import torch.distributed as dist
from transformers import AutoConfig, AutoModel
import colossalai
from colossalai.booster.booster import Booster
from colossalai.booster.plugin.moe_hybrid_parallel_plugin import MoeHybridParallelPlugin
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
from colossalai.testing.random import seed_all
from tests.test_moe.moe_utils import assert_loose_close, check_model_equal
NUM_BATCH = 8
NUM_TOK_PER_BATCH, NUM_EXPERTS = 4, 2
NUM_LAYERS = 4
HIDDEN_SIZE_PER_HEAD = 4
NUM_HEADS = 4
TOP_K = 2
CHECKED_CONFIG = [ # FOR_WORLD=4
(1, 4, 1, 1, 1),
(1, 1, 4, 1, 1),
(1, 1, 1, 4, 1),
(1, 1, 1, 1, 4),
(0, 1, 4, 1, 1),
(0, 1, 1, 4, 1),
(0, 1, 1, 1, 4),
(1, 2, 1, 1, 1),
]
@parameterize(
"config",
[
(1, 2, 2, 1, 1),
(1, 2, 1, 2, 1),
(1, 2, 1, 1, 2),
],
)
def run_zero_with_original_model(config: Tuple[int, ...]):
stage, ep_size, pp_size, tp_size, sp_size = config
world_size = dist.get_world_size()
rank = dist.get_rank()
dtype, precision = torch.float16, "fp16"
torch.cuda.set_device(dist.get_rank())
plugin = MoeHybridParallelPlugin(
pp_size=pp_size,
num_microbatches=pp_size,
tp_size=tp_size,
sp_size=sp_size,
ep_size=ep_size,
zero_stage=stage,
enable_sequence_parallelism=sp_size > 1,
sequence_parallelism_mode="all_to_all" if sp_size > 1 else None,
enable_flash_attention=sp_size > 1,
overlap_communication=False,
initial_scale=1,
precision=precision,
find_unused_parameters=True,
)
dp_size = plugin.dp_size
booster = Booster(plugin=plugin)
assert pp_size <= NUM_LAYERS, "pp_size should be less than or equal to NUM_LAYERS"
config = AutoConfig.from_pretrained(
"deepseek-ai/deepseek-moe-16b-base",
hidden_size=HIDDEN_SIZE_PER_HEAD * NUM_HEADS,
intermediate_size=HIDDEN_SIZE_PER_HEAD * NUM_HEADS * 2,
moe_intermediate_size=HIDDEN_SIZE_PER_HEAD * NUM_HEADS * 2,
num_hidden_layers=4,
num_attention_heads=NUM_HEADS,
num_key_value_heads=NUM_HEADS,
first_k_dense_replace=1,
attn_implementation="flash_attention_2",
torch_dtype="float16",
n_routed_experts=NUM_EXPERTS,
num_experts_per_tok=TOP_K,
trust_remote_code=True,
)
# init model with the same seed
seed_all(10086)
torch_model = AutoModel.from_config(config, trust_remote_code=True).cuda().to(dtype)
torch_optimizer = torch.optim.SGD(torch_model.parameters(), lr=1)
parallel_model = deepcopy(torch_model)
parallel_optimizer = torch.optim.SGD(parallel_model.parameters(), lr=1)
parallel_model, parallel_optimizer, _, _, _ = booster.boost(parallel_model, parallel_optimizer)
# create different input along dp axis
seed_all(1453 + rank)
torch_model.train()
parallel_model.train()
for _ in range(2):
# gen random input
input_embeddings = torch.rand(
NUM_BATCH, NUM_TOK_PER_BATCH, HIDDEN_SIZE_PER_HEAD * NUM_HEADS, requires_grad=True
).cuda()
dist.all_reduce(
input_embeddings, group=plugin.pp_group
) # pp inputs except the first stage doesn't matter, but need to be replicate for torch model check
dist.all_reduce(input_embeddings, group=plugin.tp_group) # tp group duplicate input
dist.all_reduce(input_embeddings, group=plugin.sp_group) # sp group duplicate input
# run the model with hybrid parallel
if booster.plugin.stage_manager is not None:
# for test with pp
data_iter = iter([{"inputs_embeds": input_embeddings}])
sharded_output = booster.execute_pipeline(
data_iter,
parallel_model,
lambda x, y: x[0].mean(),
parallel_optimizer,
return_loss=True,
return_outputs=True,
)
if booster.plugin.stage_manager.is_last_stage():
parallel_output = sharded_output["loss"]
else:
parallel_output = torch.tensor(12345.0, device="cuda")
# broadcast along pp axis
dist.broadcast(
parallel_output, src=dist.get_process_group_ranks(plugin.pp_group)[-1], group=plugin.pp_group
)
else:
# for test without pp
parallel_output = parallel_model(inputs_embeds=input_embeddings.to(dtype)).last_hidden_state.mean()
parallel_optimizer.backward(parallel_output)
parallel_optimizer.step()
parallel_optimizer.zero_grad()
dist.all_reduce(parallel_output, group=plugin.dp_group)
# ===================================================================================
# run normal model with all dp(different) inputs
all_inputs = [torch.empty_like(input_embeddings) for _ in range(dp_size)]
dist.all_gather(all_inputs, input_embeddings, group=plugin.dp_group)
torch_output_sum = 0
for input_data_ in all_inputs:
torch_output = torch_model(inputs_embeds=input_data_.to(dtype)).last_hidden_state.mean()
torch_output.backward()
torch_output_sum += torch_output.detach()
# avg dp grads follows zero optimizer
for p in torch_model.parameters():
if p.grad is not None:
p.grad /= dp_size
torch_optimizer.step()
torch_optimizer.zero_grad()
assert_loose_close(parallel_output, torch_output_sum, dtype=dtype)
# use checkpoint to load sharded zero model
model_dir = "./test_deepseek"
if rank == world_size - 1:
os.makedirs(model_dir, exist_ok=True)
dist.barrier()
booster.save_model(parallel_model, model_dir, shard=True)
dist.barrier()
saved_model = AutoModel.from_pretrained(model_dir, trust_remote_code=True).cuda()
check_model_equal(torch_model, saved_model)
dist.barrier()
if rank == world_size - 1:
shutil.rmtree(model_dir)
print(f"rank {dist.get_rank()} test passed")
def run_dist(rank, world_size, port):
colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
run_zero_with_original_model()
@pytest.mark.dist
@pytest.mark.parametrize("world_size", [4])
@rerun_if_address_is_in_use()
def test_deepseek(world_size):
spawn(run_dist, world_size)
if __name__ == "__main__":
test_deepseek(world_size=4)