You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/tests/kit/model_zoo/custom/nested_model.py

54 lines
1.2 KiB

import torch
import torch.nn as nn
import torch.nn.functional as F
from ..registry import model_zoo
from .base import CheckpointModule
class SubNet(nn.Module):
def __init__(self, out_features) -> None:
super().__init__()
self.bias = nn.Parameter(torch.zeros(out_features))
def forward(self, x, weight):
return F.linear(x, weight, self.bias)
class NestedNet(CheckpointModule):
def __init__(self, checkpoint=False) -> None:
super().__init__(checkpoint)
self.fc1 = nn.Linear(5, 5)
self.sub_fc = SubNet(5)
self.fc2 = nn.Linear(5, 2)
def forward(self, x):
x = self.fc1(x)
x = self.sub_fc(x, self.fc1.weight)
x = self.fc1(x)
x = self.fc2(x)
return x
def data_gen():
return dict(x=torch.rand(16, 5))
def loss_fn(x):
outputs = x["x"]
label = torch.randint(low=0, high=2, size=(16,), device=outputs.device)
return F.cross_entropy(x["x"], label)
def output_transform(x: torch.Tensor):
return dict(x=x)
model_zoo.register(
name="custom_nested_model",
model_fn=NestedNet,
data_gen_fn=data_gen,
output_transform_fn=output_transform,
loss_fn=loss_fn,
)