You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/amp/naive_amp/mixed_precision_optimizer.py

220 lines
8.0 KiB

from typing import Dict, List, Tuple
import torch
from torch import Tensor, inf
from torch.nn import Module, Parameter
from torch.optim import Optimizer
from colossalai.interface import OptimizerWrapper
from .mixed_precision_mixin import BF16MixedPrecisionMixin, FP16MixedPrecisionMixin
class NaiveFP16MixedPrecisionMixin(FP16MixedPrecisionMixin):
def __init__(
self,
working_params: List[Parameter],
initial_scale: float = 2**16,
min_scale: float = 1,
growth_factor: float = 2,
backoff_factor: float = 0.5,
growth_interval: int = 1000,
hysteresis: int = 2,
max_scale: float = 2**32,
) -> None:
super().__init__(
initial_scale, min_scale, growth_factor, backoff_factor, growth_interval, hysteresis, max_scale
)
self.params = working_params
def check_local_overflow(self) -> bool:
for p in self.params:
if p.grad is not None and not torch.isfinite(p.grad).all():
return True
return False
class MixedPrecisionOptimizer(OptimizerWrapper):
def __init__(
self,
optim: Optimizer,
precision: str = "fp16",
initial_scale: float = 2**16,
min_scale: float = 1,
growth_factor: float = 2,
backoff_factor: float = 0.5,
growth_interval: int = 1000,
hysteresis: int = 2,
max_scale: float = 2**32,
max_norm: float = 0.0,
):
super().__init__(optim)
if precision == "fp16":
working_params = []
for group in self.optim.param_groups:
for p in group["params"]:
working_params.append(p)
self.mixed_precision = NaiveFP16MixedPrecisionMixin(
working_params,
initial_scale=initial_scale,
min_scale=min_scale,
growth_factor=growth_factor,
backoff_factor=backoff_factor,
growth_interval=growth_interval,
hysteresis=hysteresis,
max_scale=max_scale,
)
elif precision == "bf16":
self.mixed_precision = BF16MixedPrecisionMixin()
else:
raise ValueError(f"Unsupported precision: {precision}")
self.max_norm = max_norm
self.working_to_master_map: Dict[Parameter, Tensor] = {}
self.master_to_working_map: Dict[Tensor, Parameter] = {}
# create master weights
for group in self.optim.param_groups:
master_params = []
for p in group["params"]:
if p.requires_grad:
master_p = p
if p.dtype != torch.float:
master_p = p.detach().float()
self.working_to_master_map[p] = master_p
self.master_to_working_map[master_p] = p
master_params.append(master_p)
group["params"] = master_params
[plugin] hybrid support zero bubble pipeline (#6060) * hybrid support zbv * fix fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * Update zero_bubble_pp.py * fix * fix-ci * fix [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * fix * fix * fix * [zerobubble]Support ZeroBubble Pipeline (#6034) * [feat] add zerobubble pp (just a frame now); add POC test for dx_dw; add test for zerobubble; * [feat] add dw test; * [fix] fix weight not close; * [update] update text; * [feat] add test run_fwd_bwd automatic scheduling; * [feat] split communication and calculation; fix pop empty send_bwd_buffer error; * [feat] add test for p & p grad; * [feat] add comments for ZBV func; * [fix] rm useless assign and comments; * [fix] fix ci test; add pytest; * [feat] add run_fwd_bwd_with_microbatch (replace input) & test; add p&p.grad assert close test & all pass; * [feat] add apply v_schedule graph; p & p.grad assert err exist; * [fix] update * [feat] fix ci; add assert; * [feat] fix poc format * [feat] fix func name & ci; add comments; * [fix] fix poc test; add comments in poc; * [feat] add optim backward_b_by_grad * [feat] fix optimizer bwd b & w; support return accum loss & output * [feat] add fwd_bwd_step, run_fwd_only; * [fix] fix optim bwd; add license for v_schedule; remove redundant attributes; fix schedule loop "while"--> "for"; add communication dict; * [fix] fix communication_map; * [feat] update test; rm comments; * [fix] rm zbv in hybridplugin * [fix] fix optim bwd; * [fix] fix optim bwd; * [fix] rm output.data after send fwd; * [fix] fix bwd step if condition; remove useless comments and format info; * [fix] fix detach output & release output; * [fix] rm requir_grad for output; * [fix] fix requir grad position and detach position and input&output local buffer append position; * [feat] add memory assertation; * [fix] fix mem check; * [fix] mem assertation' * [fix] fix mem assertation * [fix] fix mem; use a new model shape; only assert mem less and equal than theo; * [fix] fix model zoo import; * [fix] fix redundant detach & clone; add buffer assertation in the end; * [fix] add output_obj_grad assert None at bwd b step; replace input_obj.require_grad_ with treemap; * [fix] update optim state dict assert (include param group & state); fix mem assert after add optim; * [fix] add testcase with microbatch 4; * hybrid support zbv * fix fix * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update zero_bubble_pp.py * fix * fix-ci * fix [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci fix * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * fix * fix * fix * fix * fix * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * fix * fix * fix --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: duanjunwen <935724073@qq.com>
2 months ago
def backward(self, loss: Tensor, inputs=None, retain_graph=False, **kwargs):
loss = self.mixed_precision.pre_backward(loss)
[plugin] hybrid support zero bubble pipeline (#6060) * hybrid support zbv * fix fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * Update zero_bubble_pp.py * fix * fix-ci * fix [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * fix * fix * fix * [zerobubble]Support ZeroBubble Pipeline (#6034) * [feat] add zerobubble pp (just a frame now); add POC test for dx_dw; add test for zerobubble; * [feat] add dw test; * [fix] fix weight not close; * [update] update text; * [feat] add test run_fwd_bwd automatic scheduling; * [feat] split communication and calculation; fix pop empty send_bwd_buffer error; * [feat] add test for p & p grad; * [feat] add comments for ZBV func; * [fix] rm useless assign and comments; * [fix] fix ci test; add pytest; * [feat] add run_fwd_bwd_with_microbatch (replace input) & test; add p&p.grad assert close test & all pass; * [feat] add apply v_schedule graph; p & p.grad assert err exist; * [fix] update * [feat] fix ci; add assert; * [feat] fix poc format * [feat] fix func name & ci; add comments; * [fix] fix poc test; add comments in poc; * [feat] add optim backward_b_by_grad * [feat] fix optimizer bwd b & w; support return accum loss & output * [feat] add fwd_bwd_step, run_fwd_only; * [fix] fix optim bwd; add license for v_schedule; remove redundant attributes; fix schedule loop "while"--> "for"; add communication dict; * [fix] fix communication_map; * [feat] update test; rm comments; * [fix] rm zbv in hybridplugin * [fix] fix optim bwd; * [fix] fix optim bwd; * [fix] rm output.data after send fwd; * [fix] fix bwd step if condition; remove useless comments and format info; * [fix] fix detach output & release output; * [fix] rm requir_grad for output; * [fix] fix requir grad position and detach position and input&output local buffer append position; * [feat] add memory assertation; * [fix] fix mem check; * [fix] mem assertation' * [fix] fix mem assertation * [fix] fix mem; use a new model shape; only assert mem less and equal than theo; * [fix] fix model zoo import; * [fix] fix redundant detach & clone; add buffer assertation in the end; * [fix] add output_obj_grad assert None at bwd b step; replace input_obj.require_grad_ with treemap; * [fix] update optim state dict assert (include param group & state); fix mem assert after add optim; * [fix] add testcase with microbatch 4; * hybrid support zbv * fix fix * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update zero_bubble_pp.py * fix * fix-ci * fix [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci fix * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * fix * fix * fix * fix * fix * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * fix * fix * fix --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: duanjunwen <935724073@qq.com>
2 months ago
loss.backward(inputs=inputs, retain_graph=retain_graph, **kwargs)
[plugin] hybrid support zero bubble pipeline (#6060) * hybrid support zbv * fix fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * Update zero_bubble_pp.py * fix * fix-ci * fix [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * fix * fix * fix * [zerobubble]Support ZeroBubble Pipeline (#6034) * [feat] add zerobubble pp (just a frame now); add POC test for dx_dw; add test for zerobubble; * [feat] add dw test; * [fix] fix weight not close; * [update] update text; * [feat] add test run_fwd_bwd automatic scheduling; * [feat] split communication and calculation; fix pop empty send_bwd_buffer error; * [feat] add test for p & p grad; * [feat] add comments for ZBV func; * [fix] rm useless assign and comments; * [fix] fix ci test; add pytest; * [feat] add run_fwd_bwd_with_microbatch (replace input) & test; add p&p.grad assert close test & all pass; * [feat] add apply v_schedule graph; p & p.grad assert err exist; * [fix] update * [feat] fix ci; add assert; * [feat] fix poc format * [feat] fix func name & ci; add comments; * [fix] fix poc test; add comments in poc; * [feat] add optim backward_b_by_grad * [feat] fix optimizer bwd b & w; support return accum loss & output * [feat] add fwd_bwd_step, run_fwd_only; * [fix] fix optim bwd; add license for v_schedule; remove redundant attributes; fix schedule loop "while"--> "for"; add communication dict; * [fix] fix communication_map; * [feat] update test; rm comments; * [fix] rm zbv in hybridplugin * [fix] fix optim bwd; * [fix] fix optim bwd; * [fix] rm output.data after send fwd; * [fix] fix bwd step if condition; remove useless comments and format info; * [fix] fix detach output & release output; * [fix] rm requir_grad for output; * [fix] fix requir grad position and detach position and input&output local buffer append position; * [feat] add memory assertation; * [fix] fix mem check; * [fix] mem assertation' * [fix] fix mem assertation * [fix] fix mem; use a new model shape; only assert mem less and equal than theo; * [fix] fix model zoo import; * [fix] fix redundant detach & clone; add buffer assertation in the end; * [fix] add output_obj_grad assert None at bwd b step; replace input_obj.require_grad_ with treemap; * [fix] update optim state dict assert (include param group & state); fix mem assert after add optim; * [fix] add testcase with microbatch 4; * hybrid support zbv * fix fix * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update zero_bubble_pp.py * fix * fix-ci * fix [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci fix * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * fix * fix * fix * fix * fix * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * fix * fix * fix --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: duanjunwen <935724073@qq.com>
2 months ago
def backward_by_grad(self, tensor: Tensor, grad: Tensor, inputs: Tensor = None, retain_graph: bool = False):
grad = self.mixed_precision.pre_backward_by_grad(tensor, grad)
[plugin] hybrid support zero bubble pipeline (#6060) * hybrid support zbv * fix fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * Update zero_bubble_pp.py * fix * fix-ci * fix [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * fix * fix * fix * [zerobubble]Support ZeroBubble Pipeline (#6034) * [feat] add zerobubble pp (just a frame now); add POC test for dx_dw; add test for zerobubble; * [feat] add dw test; * [fix] fix weight not close; * [update] update text; * [feat] add test run_fwd_bwd automatic scheduling; * [feat] split communication and calculation; fix pop empty send_bwd_buffer error; * [feat] add test for p & p grad; * [feat] add comments for ZBV func; * [fix] rm useless assign and comments; * [fix] fix ci test; add pytest; * [feat] add run_fwd_bwd_with_microbatch (replace input) & test; add p&p.grad assert close test & all pass; * [feat] add apply v_schedule graph; p & p.grad assert err exist; * [fix] update * [feat] fix ci; add assert; * [feat] fix poc format * [feat] fix func name & ci; add comments; * [fix] fix poc test; add comments in poc; * [feat] add optim backward_b_by_grad * [feat] fix optimizer bwd b & w; support return accum loss & output * [feat] add fwd_bwd_step, run_fwd_only; * [fix] fix optim bwd; add license for v_schedule; remove redundant attributes; fix schedule loop "while"--> "for"; add communication dict; * [fix] fix communication_map; * [feat] update test; rm comments; * [fix] rm zbv in hybridplugin * [fix] fix optim bwd; * [fix] fix optim bwd; * [fix] rm output.data after send fwd; * [fix] fix bwd step if condition; remove useless comments and format info; * [fix] fix detach output & release output; * [fix] rm requir_grad for output; * [fix] fix requir grad position and detach position and input&output local buffer append position; * [feat] add memory assertation; * [fix] fix mem check; * [fix] mem assertation' * [fix] fix mem assertation * [fix] fix mem; use a new model shape; only assert mem less and equal than theo; * [fix] fix model zoo import; * [fix] fix redundant detach & clone; add buffer assertation in the end; * [fix] add output_obj_grad assert None at bwd b step; replace input_obj.require_grad_ with treemap; * [fix] update optim state dict assert (include param group & state); fix mem assert after add optim; * [fix] add testcase with microbatch 4; * hybrid support zbv * fix fix * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update zero_bubble_pp.py * fix * fix-ci * fix [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci fix * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * fix * fix * fix * fix * fix * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * fix * fix * fix --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: duanjunwen <935724073@qq.com>
2 months ago
torch.autograd.backward(
tensors=tensor,
grad_tensors=grad,
inputs=inputs,
retain_graph=retain_graph,
)
def zero_grad(self, *args, **kwargs):
for p in self.working_to_master_map.keys():
p.grad = None
self.mixed_precision.pre_zero_grad()
return super().zero_grad(*args, **kwargs)
def _unscale_and_clip_grads(self, total_norm: float) -> None:
"""
Unscale and clip gradients before performing the optimization step.
Args:
total_norm (float): The computed total gradient norm.
Returns:
None
"""
div_scale = 1.0
# If mixed-precision training is used, get the gradient division scale from the mixed-precision handler.
if self.mixed_precision is not None:
div_scale = self.mixed_precision.get_grad_div_scale()
if self.max_norm > 0.0:
# Calculate the scaling factor for gradient clipping
# The gradient norm is scaled by 'div_scale' and then clipped to 'max_norm'
clip = ((total_norm / div_scale) + 1e-6) / self.max_norm
# If the clip factor exceeds 1, adjust 'div_scale' accordingly to ensure clipping
if clip > 1:
div_scale = clip * div_scale
# Apply the scaling factor to gradients
for group in self.param_groups:
for p in group["params"]:
if p.grad is None:
continue
p.grad.data.mul_(1.0 / div_scale)
def _compute_grad_norm(self, param_gradient_pairs: List[Tuple[Tensor]], norm_type: int = 2) -> int:
r"""
Compute and return the gradient norm for gradient clipping.
Args:
param_gradient_pairs (List[Tuple[Tensor]]): List of (parameter, gradient) pairs; gradients are used for norm calculation.
norm_type (int, optional): Type of the norm used (e.g., 2 for L2 norm). Defaults to 2.
Returns:
float: The total norm of the given gradients.
"""
if len(param_gradient_pairs) == 0:
return 0.0
# gradients used for norm calculation.
gradients = [grad for param, grad in param_gradient_pairs]
if norm_type == inf:
total_norm = max(grad.data.abs().max() for grad in gradients)
else:
total_norm_exponentiated = 0.0
for grad in gradients:
total_norm_exponentiated += grad.data.double().norm(norm_type) ** norm_type
total_norm = total_norm_exponentiated ** (1.0 / norm_type)
return total_norm
def step(self, *args, **kwargs):
if self.mixed_precision.should_skip_step():
self.zero_grad()
return
# prepare grads
for group in self.optim.param_groups:
for p in group["params"]:
working_param = self.master_to_working_map[p]
if p is working_param:
continue
if working_param.grad is not None:
p.grad = working_param.grad.data.float()
working_param.grad = None
# gradient unscale and clip.
if self.max_norm <= 0:
# no need to compute gradient norm.
total_norm = 0.0
else:
# compute the total norm.
param_gradient_pairs = [
(self.master_to_working_map[p], p.grad)
for group in self.param_groups
for p in group["params"]
if p.grad is not None
]
total_norm = self._compute_grad_norm(param_gradient_pairs)
self._unscale_and_clip_grads(total_norm)
self.optim.step(*args, **kwargs)
# update working params
for group in self.optim.param_groups:
for p in group["params"]:
working_param = self.master_to_working_map[p]
if p is working_param:
continue
working_param.data.copy_(p.data)
def update_master_params(self, model: Module):
# Update master params from working params
with torch.no_grad():
for p in model.parameters():
if (p is None) or (p not in self.working_to_master_map):
continue
master_param = self.working_to_master_map[p]
master_param.data.copy_(p.data)
def get_working_to_master_map(self) -> Dict[int, torch.Tensor]:
return {id(working_p): master_p for working_p, master_p in self.working_to_master_map.items()}
def get_master_to_working_map(self) -> Dict[int, torch.Tensor]:
return {id(master_p): working_p for master_p, working_p in self.master_to_working_map.items()}