ColossalAI/colossalai/inference/modeling/policy/nopadding_baichuan.py

68 lines
2.4 KiB
Python
Raw Normal View History

import torch.nn as nn
from torch.nn import Parameter
from colossalai.inference.modeling.models.nopadding_baichuan import (
NopadBaichuanAttention,
NopadBaichuanMLP,
baichuan_rmsnorm_forward,
)
from colossalai.inference.modeling.models.nopadding_llama import (
llama_causal_lm_forward,
llama_decoder_layer_forward,
llama_model_forward,
)
from colossalai.inference.utils import init_to_get_rotary
from colossalai.shardformer.policies.base_policy import ModulePolicyDescription, SubModuleReplacementDescription
from colossalai.shardformer.policies.llama import LlamaForCausalLMPolicy
class NoPaddingBaichuanModelInferPolicy(LlamaForCausalLMPolicy):
def __init__(self) -> None:
super().__init__()
def module_policy(self):
policy = super().module_policy()
decoder_attribute_replacement = {
"lm_head.weight": Parameter(nn.functional.normalize(self.model.lm_head.weight), requires_grad=False),
}
policy["BaichuanForCausalLM"] = ModulePolicyDescription(
attribute_replacement=decoder_attribute_replacement,
)
# used for relpacing Baichuan 7B/13B decoder layer
for layer_name in ["DecoderLayer", "BaichuanLayer"]:
policy[layer_name] = ModulePolicyDescription(
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="mlp",
target_module=NopadBaichuanMLP,
),
SubModuleReplacementDescription(
suffix="self_attn",
target_module=NopadBaichuanAttention,
),
]
)
self.append_or_create_method_replacement(
description={"forward": llama_decoder_layer_forward}, policy=policy, target_key=layer_name
)
self.append_or_create_method_replacement(
description={"forward": llama_causal_lm_forward}, policy=policy, target_key="BaichuanForCausalLM"
)
self.append_or_create_method_replacement(
description={"forward": llama_model_forward}, policy=policy, target_key="BaichuanModel"
)
self.append_or_create_method_replacement(
description={"forward": baichuan_rmsnorm_forward}, policy=policy, target_key="RMSNorm"
)
return policy
def postprocess(self):
init_to_get_rotary(self.model.model)
return self.model