|
|
|
from argparse import ArgumentParser
|
|
|
|
from functools import partial
|
|
|
|
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
import torch
|
|
|
|
import torchvision.models as tm
|
|
|
|
from bench_utils import GPTLMLoss, bench_rotor, data_gen_gpt2, data_gen_resnet, gpt2_medium
|
|
|
|
|
|
|
|
import colossalai
|
|
|
|
from colossalai.fx import metainfo_trace, symbolic_trace
|
|
|
|
from colossalai.testing import spawn
|
|
|
|
|
|
|
|
|
|
|
|
def _benchmark(rank, world_size, port, args):
|
|
|
|
"""
|
|
|
|
Auto activation checkpoint solver benchmark, we provide benchmark on two models: gpt2_medium and resnet50.
|
|
|
|
The benchmark will sample in a range of memory budget for each model and output the benchmark summary and
|
|
|
|
data visualization of peak memory vs. budget memory and relative step time vs. peak memory.
|
|
|
|
"""
|
|
|
|
colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
|
|
|
if args.model == "resnet50":
|
|
|
|
model = tm.resnet50()
|
|
|
|
data_gen = partial(data_gen_resnet, batch_size=128, shape=(3, 224, 224))
|
|
|
|
gm = symbolic_trace(model)
|
|
|
|
gm = metainfo_trace(gm, torch.empty(128, 3, 224, 224, device="meta"))
|
|
|
|
loss = torch.nn.CrossEntropyLoss()
|
|
|
|
else:
|
|
|
|
model = gpt2_medium()
|
|
|
|
data_gen = partial(data_gen_gpt2, batch_size=8, seq_len=1024, vocab_size=50257)
|
|
|
|
data, mask = data_gen(device="meta")[0]
|
|
|
|
gm = symbolic_trace(model, meta_args={"input_ids": data, "attention_mask": mask})
|
|
|
|
gm = metainfo_trace(gm, data, mask)
|
|
|
|
loss = GPTLMLoss()
|
|
|
|
|
|
|
|
free_memory = 11000 * 1024**2 if args.model == "resnet50" else 56000 * 1024**2
|
|
|
|
start_factor = 4 if args.model == "resnet50" else 10
|
|
|
|
|
|
|
|
# trace and benchmark
|
|
|
|
budgets, peak_hist, step_hist = bench_rotor(
|
|
|
|
gm, loss, data_gen, num_steps=5, sample_points=15, free_memory=free_memory, start_factor=start_factor
|
|
|
|
)
|
|
|
|
|
|
|
|
# print summary
|
|
|
|
print("==============benchmark summary==============")
|
|
|
|
for budget, peak, step in zip(budgets, peak_hist, step_hist):
|
|
|
|
print(f"memory budget: {budget:.3f} MB, peak memory: {peak:.3f} MB, step time: {step:.3f} MS")
|
|
|
|
|
|
|
|
# plot valid results
|
|
|
|
fig, axs = plt.subplots(1, 2, figsize=(16, 8))
|
|
|
|
valid_idx = step_hist.index(next(step for step in step_hist if step != float("inf")))
|
|
|
|
|
|
|
|
# plot peak memory vs. budget memory
|
|
|
|
axs[0].plot(budgets[valid_idx:], peak_hist[valid_idx:])
|
|
|
|
axs[0].plot([budgets[valid_idx], budgets[-1]], [budgets[valid_idx], budgets[-1]], linestyle="--")
|
|
|
|
axs[0].set_xlabel("Budget Memory (MB)")
|
|
|
|
axs[0].set_ylabel("Peak Memory (MB)")
|
|
|
|
axs[0].set_title("Peak Memory vs. Budget Memory")
|
|
|
|
|
|
|
|
# plot relative step time vs. budget memory
|
|
|
|
axs[1].plot(peak_hist[valid_idx:], [step_time / step_hist[-1] for step_time in step_hist[valid_idx:]])
|
|
|
|
axs[1].plot([peak_hist[valid_idx], peak_hist[-1]], [1.0, 1.0], linestyle="--")
|
|
|
|
axs[1].set_xlabel("Peak Memory (MB)")
|
|
|
|
axs[1].set_ylabel("Relative Step Time")
|
|
|
|
axs[1].set_title("Step Time vs. Peak Memory")
|
|
|
|
axs[1].set_ylim(0.8, 1.5)
|
|
|
|
|
|
|
|
# save plot
|
|
|
|
fig.savefig(f"{args.model}_benchmark.png")
|
|
|
|
|
|
|
|
|
|
|
|
def auto_activation_checkpoint_benchmark(args):
|
|
|
|
world_size = 1
|
|
|
|
spawn(_benchmark, world_size, args=args)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
parser = ArgumentParser("Auto Activation Checkpoint Solver Benchmark")
|
|
|
|
parser.add_argument("--model", type=str, default="gpt2", choices=["gpt2", "resnet50"])
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
|
|
auto_activation_checkpoint_benchmark(args)
|