2021-10-28 16:21:23 +00:00
|
|
|
#!/usr/bin/env python
|
|
|
|
# -*- encoding: utf-8 -*-
|
|
|
|
|
|
|
|
import math
|
|
|
|
|
|
|
|
import torch.distributed as dist
|
2022-02-14 03:15:02 +00:00
|
|
|
from colossalai.global_variables import tensor_parallel_env as env
|
2021-10-28 16:21:23 +00:00
|
|
|
from colossalai.registry import DIST_GROUP_INITIALIZER
|
|
|
|
|
|
|
|
from ..parallel_mode import ParallelMode
|
|
|
|
from .process_group_initializer import ProcessGroupInitializer
|
|
|
|
|
|
|
|
|
|
|
|
def _check_depth_env_var(depth):
|
2022-02-14 03:15:02 +00:00
|
|
|
# check global variable
|
|
|
|
env_depth = env.depth_3d
|
2021-10-28 16:21:23 +00:00
|
|
|
|
|
|
|
if env_depth:
|
|
|
|
assert int(env_depth) == depth, \
|
Develop/experiments (#59)
* Add gradient accumulation, fix lr scheduler
* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)
* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes
* fixed trainer
* Revert "fixed trainer"
This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097.
* improved consistency between trainer, engine and schedule (#23)
Co-authored-by: 1SAA <c2h214748@gmail.com>
* Split conv2d, class token, positional embedding in 2d, Fix random number in ddp
Fix convergence in cifar10, Imagenet1000
* Integrate 1d tensor parallel in Colossal-AI (#39)
* fixed 1D and 2D convergence (#38)
* optimized 2D operations
* fixed 1D ViT convergence problem
* Feature/ddp (#49)
* remove redundancy func in setup (#19) (#20)
* use env to control the language of doc (#24) (#25)
* Support TP-compatible Torch AMP and Update trainer API (#27)
* Add gradient accumulation, fix lr scheduler
* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)
* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes
* fixed trainer
* Revert "fixed trainer"
This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097.
* improved consistency between trainer, engine and schedule (#23)
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
* add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29)
* add explanation for ViT example (#35) (#36)
* support torch ddp
* fix loss accumulation
* add log for ddp
* change seed
* modify timing hook
Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
* Feature/pipeline (#40)
* remove redundancy func in setup (#19) (#20)
* use env to control the language of doc (#24) (#25)
* Support TP-compatible Torch AMP and Update trainer API (#27)
* Add gradient accumulation, fix lr scheduler
* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)
* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes
* fixed trainer
* Revert "fixed trainer"
This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097.
* improved consistency between trainer, engine and schedule (#23)
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
* add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29)
* add explanation for ViT example (#35) (#36)
* optimize communication of pipeline parallel
* fix grad clip for pipeline
Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
* optimized 3d layer to fix slow computation ; tested imagenet performance with 3d; reworked lr_scheduler config definition; fixed launch args; fixed some printing issues; simplified apis of 3d layers (#51)
* Update 2.5d layer code to get a similar accuracy on imagenet-1k dataset
* update api for better usability (#58)
update api for better usability
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
Co-authored-by: puck_WCR <46049915+WANG-CR@users.noreply.github.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
Co-authored-by: BoxiangW <45734921+BoxiangW@users.noreply.github.com>
2021-12-09 07:08:29 +00:00
|
|
|
'DEPTH_3D has been set in the current environment and ' \
|
2021-10-28 16:21:23 +00:00
|
|
|
'does not match with the value passed to this initialized'
|
|
|
|
else:
|
2022-02-14 03:15:02 +00:00
|
|
|
env.depth_3d = depth
|
2021-10-28 16:21:23 +00:00
|
|
|
|
|
|
|
|
|
|
|
class Initializer_3D_Input(ProcessGroupInitializer):
|
2022-01-21 02:44:30 +00:00
|
|
|
"""3D tensor parallel initialization among input.
|
|
|
|
|
|
|
|
:param num_group: The number of all tensor groups
|
|
|
|
:param depth: Depth of 3D parallelism
|
|
|
|
:param args: Args used in base class
|
|
|
|
|
|
|
|
:type num_group: int
|
|
|
|
:type depth: int
|
|
|
|
"""
|
2022-02-14 03:15:02 +00:00
|
|
|
|
2021-10-28 16:21:23 +00:00
|
|
|
def __init__(self, num_group: int, depth: int, *args):
|
|
|
|
super().__init__(*args)
|
|
|
|
self.num_group = num_group
|
|
|
|
self.depth = depth
|
|
|
|
|
|
|
|
def init_dist_group(self):
|
2022-01-21 02:44:30 +00:00
|
|
|
"""Initialize 3D tensor parallel groups among input, and assign local_ranks and groups to each gpu.
|
2021-10-28 16:21:23 +00:00
|
|
|
|
2022-01-21 02:44:30 +00:00
|
|
|
:return: 3D tensor parallelism's information among input
|
|
|
|
:rtype: Tuple(local_rank, group_world_size, process_group, ranks_in_group, mode)
|
|
|
|
"""
|
2021-10-28 16:21:23 +00:00
|
|
|
local_rank = None
|
|
|
|
ranks_in_group = None
|
|
|
|
process_group = None
|
|
|
|
group_world_size = None
|
|
|
|
mode = ParallelMode.PARALLEL_3D_INPUT
|
2022-02-14 03:15:02 +00:00
|
|
|
env.input_group_3d = mode
|
2021-10-28 16:21:23 +00:00
|
|
|
|
|
|
|
for h in range(self.num_group):
|
|
|
|
for i in range(self.depth):
|
|
|
|
for k in range(self.depth):
|
2022-02-14 03:15:02 +00:00
|
|
|
ranks = [h * self.depth**3 + i + self.depth * (j + self.depth * k) for j in range(self.depth)]
|
2021-10-28 16:21:23 +00:00
|
|
|
group = dist.new_group(ranks)
|
|
|
|
|
|
|
|
if self.rank in ranks:
|
|
|
|
local_rank = ranks.index(self.rank)
|
|
|
|
group_world_size = len(ranks)
|
|
|
|
process_group = group
|
|
|
|
ranks_in_group = ranks
|
|
|
|
|
|
|
|
return local_rank, group_world_size, process_group, ranks_in_group, mode
|
|
|
|
|
|
|
|
|
|
|
|
class Initializer_3D_Weight(ProcessGroupInitializer):
|
2022-01-21 02:44:30 +00:00
|
|
|
"""3D tensor parallel initialization among weight.
|
|
|
|
|
|
|
|
:param num_group: The number of all tensor groups
|
|
|
|
:param depth: Depth of 3D parallelism
|
|
|
|
:param args: Args used in base class
|
|
|
|
|
|
|
|
:type num_group: int
|
|
|
|
:type depth: int
|
|
|
|
"""
|
2021-10-28 16:21:23 +00:00
|
|
|
|
|
|
|
def __init__(self, num_group: int, depth: int, *args):
|
|
|
|
super().__init__(*args)
|
|
|
|
self.num_group = num_group
|
|
|
|
self.depth = depth
|
|
|
|
|
|
|
|
def init_dist_group(self):
|
2022-01-21 02:44:30 +00:00
|
|
|
"""Initialize 3D tensor parallel groups among weight, and assign local_ranks and groups to each gpu.
|
2021-10-28 16:21:23 +00:00
|
|
|
|
2022-01-21 02:44:30 +00:00
|
|
|
:return: 3D tensor parallelism's information among weight
|
|
|
|
:rtype: Tuple(local_rank, group_world_size, process_group, ranks_in_group, mode)
|
|
|
|
"""
|
2021-10-28 16:21:23 +00:00
|
|
|
local_rank = None
|
|
|
|
ranks_in_group = None
|
|
|
|
process_group = None
|
|
|
|
group_world_size = None
|
|
|
|
mode = ParallelMode.PARALLEL_3D_WEIGHT
|
2022-02-14 03:15:02 +00:00
|
|
|
env.weight_group_3d = mode
|
2021-10-28 16:21:23 +00:00
|
|
|
|
|
|
|
for h in range(self.num_group):
|
|
|
|
for k in range(self.depth):
|
|
|
|
for j in range(self.depth):
|
2022-02-14 03:15:02 +00:00
|
|
|
ranks = [h * self.depth**3 + i + self.depth * (j + self.depth * k) for i in range(self.depth)]
|
2021-10-28 16:21:23 +00:00
|
|
|
group = dist.new_group(ranks)
|
|
|
|
|
|
|
|
if self.rank in ranks:
|
|
|
|
local_rank = ranks.index(self.rank)
|
|
|
|
group_world_size = len(ranks)
|
|
|
|
process_group = group
|
|
|
|
ranks_in_group = ranks
|
|
|
|
|
|
|
|
return local_rank, group_world_size, process_group, ranks_in_group, mode
|
|
|
|
|
|
|
|
|
|
|
|
class Initializer_3D_Output(ProcessGroupInitializer):
|
2022-02-14 03:15:02 +00:00
|
|
|
"""3D tensor parallel initialization among output.
|
2022-01-21 02:44:30 +00:00
|
|
|
|
|
|
|
:param num_group: The number of all tensor groups
|
|
|
|
:param depth: Depth of 3D parallelism
|
|
|
|
:param args: Args used in base class
|
|
|
|
|
|
|
|
:type num_group: int
|
|
|
|
:type depth: int
|
|
|
|
"""
|
2021-10-28 16:21:23 +00:00
|
|
|
|
|
|
|
def __init__(self, num_group: int, depth: int, *args):
|
|
|
|
super().__init__(*args)
|
|
|
|
self.num_group = num_group
|
|
|
|
self.depth = depth
|
|
|
|
|
|
|
|
def init_dist_group(self):
|
2022-01-21 02:44:30 +00:00
|
|
|
"""Initialize 3D tensor parallel groups among output, and assign local_ranks and groups to each gpu.
|
2021-10-28 16:21:23 +00:00
|
|
|
|
2022-01-21 02:44:30 +00:00
|
|
|
:return: 3D tensor parallelism's information among output
|
|
|
|
:rtype: Tuple(local_rank, group_world_size, process_group, ranks_in_group, mode)
|
|
|
|
"""
|
2021-10-28 16:21:23 +00:00
|
|
|
local_rank = None
|
|
|
|
ranks_in_group = None
|
|
|
|
process_group = None
|
|
|
|
group_world_size = None
|
|
|
|
mode = ParallelMode.PARALLEL_3D_OUTPUT
|
2022-02-14 03:15:02 +00:00
|
|
|
env.output_group_3d = mode
|
2021-10-28 16:21:23 +00:00
|
|
|
|
|
|
|
for h in range(self.num_group):
|
|
|
|
for i in range(self.depth):
|
|
|
|
for j in range(self.depth):
|
2022-02-14 03:15:02 +00:00
|
|
|
ranks = [h * self.depth**3 + i + self.depth * (j + self.depth * k) for k in range(self.depth)]
|
2021-10-28 16:21:23 +00:00
|
|
|
group = dist.new_group(ranks)
|
|
|
|
|
|
|
|
if self.rank in ranks:
|
|
|
|
local_rank = ranks.index(self.rank)
|
|
|
|
group_world_size = len(ranks)
|
|
|
|
process_group = group
|
|
|
|
ranks_in_group = ranks
|
|
|
|
|
|
|
|
return local_rank, group_world_size, process_group, ranks_in_group, mode
|
|
|
|
|
|
|
|
|
|
|
|
@DIST_GROUP_INITIALIZER.register_module
|
|
|
|
class Initializer_3D(ProcessGroupInitializer):
|
2022-01-21 02:44:30 +00:00
|
|
|
"""Serve as the single entry point to 3D parallel initialization.
|
|
|
|
:param args: Args used to initialize ProcessGroupInitializer
|
|
|
|
"""
|
2022-02-14 03:15:02 +00:00
|
|
|
|
2021-10-28 16:21:23 +00:00
|
|
|
def __init__(self, *args):
|
|
|
|
super().__init__(*args)
|
|
|
|
self.num_group = self.world_size // self.tensor_parallel_size
|
|
|
|
self.depth = round(math.pow(self.tensor_parallel_size, 1 / 3))
|
|
|
|
assert self.tensor_parallel_size == self.depth ** 3, \
|
|
|
|
f'3D depth ({self.depth}) if not cube root of tensor parallel size ({self.tensor_parallel_size})'
|
|
|
|
_check_depth_env_var(self.depth)
|
|
|
|
|
2022-02-14 03:15:02 +00:00
|
|
|
self.input_initializer = Initializer_3D_Input(self.num_group, self.depth, *args)
|
|
|
|
self.weight_initializer = Initializer_3D_Weight(self.num_group, self.depth, *args)
|
|
|
|
self.output_initializer = Initializer_3D_Output(self.num_group, self.depth, *args)
|
2021-10-28 16:21:23 +00:00
|
|
|
|
|
|
|
def init_dist_group(self):
|
2022-01-21 02:44:30 +00:00
|
|
|
"""Initialize 3D tensor parallel groups, and assign local_ranks and groups to each gpu.
|
|
|
|
:return: 3D tensor parallelism's information
|
|
|
|
:rtype: list of Tuples (local_rank, group_world_size, process_group, ranks_in_group, mode)
|
|
|
|
"""
|
2022-03-09 08:23:33 +00:00
|
|
|
parallel_setting = [
|
|
|
|
self.input_initializer.init_dist_group(),
|
|
|
|
self.weight_initializer.init_dist_group(),
|
|
|
|
self.output_initializer.init_dist_group()
|
|
|
|
]
|
2021-10-28 16:21:23 +00:00
|
|
|
return parallel_setting
|