ColossalAI/colossalai/amp/naive_amp/grad_scaler/base_grad_scaler.py

47 lines
1.1 KiB
Python
Raw Normal View History

2022-03-09 03:52:43 +00:00
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import torch
from abc import ABC, abstractmethod
from colossalai.logging import get_dist_logger
from torch import Tensor
from typing import Dict
__all__ = ['BaseGradScaler']
class BaseGradScaler(ABC):
def __init__(self, initial_scale: int, verbose: bool):
assert initial_scale > 0
self._scale = torch.cuda.FloatTensor([initial_scale])
self._verbose = verbose
if self._verbose:
self._logger = get_dist_logger()
@property
def scale(self) -> Tensor:
return self._scale
@property
def inv_scale(self) -> Tensor:
return self._scale.double().reciprocal().float()
@abstractmethod
def state_dict(self) -> Dict:
state_dict = dict()
state_dict['scale'] = self.scale
@abstractmethod
def load_state_dict(self, state_dict: Dict) -> None:
self._scale = state_dict['scale']
@abstractmethod
def update(self, overflow: bool) -> None:
pass
def log(self, message, *args, **kwargs):
if self._verbose:
self._logger.info(message, *args, **kwargs)