|
|
|
from types import MethodType
|
|
|
|
from typing import Optional, Tuple
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
from transformers.models.llama.modeling_llama import LlamaAttention, apply_rotary_pos_emb, repeat_kv
|
|
|
|
|
|
|
|
SUPPORT_XFORMERS = False
|
|
|
|
SUPPORT_FLASH2 = False
|
|
|
|
try:
|
|
|
|
import xformers.ops as xops
|
|
|
|
|
|
|
|
SUPPORT_XFORMERS = True
|
|
|
|
except ImportError:
|
|
|
|
pass
|
|
|
|
|
|
|
|
try:
|
|
|
|
from flash_attn import flash_attn_func
|
|
|
|
|
|
|
|
SUPPORT_FLASH2 = True
|
|
|
|
except ImportError:
|
|
|
|
pass
|
|
|
|
|
|
|
|
SUPPORT_FLASH = SUPPORT_XFORMERS or SUPPORT_FLASH2
|
|
|
|
|
|
|
|
|
|
|
|
def llama_flash_attention(
|
|
|
|
self: LlamaAttention,
|
|
|
|
hidden_states: torch.Tensor,
|
|
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
|
|
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
|
|
|
output_attentions: bool = False,
|
|
|
|
use_cache: bool = False,
|
|
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
|
|
|
bsz, q_len, _ = hidden_states.size()
|
|
|
|
|
|
|
|
query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
|
|
|
key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
|
|
|
value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
|
|
|
|
|
|
|
kv_seq_len = key_states.shape[-2]
|
|
|
|
if past_key_value is not None:
|
|
|
|
kv_seq_len += past_key_value[0].shape[-2]
|
|
|
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
|
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
|
|
|
# [bsz, nh, t, hd]
|
|
|
|
|
|
|
|
if past_key_value is not None:
|
|
|
|
# reuse k, v, self_attention
|
|
|
|
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
|
|
|
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
|
|
|
|
|
|
|
past_key_value = (key_states, value_states) if use_cache else None
|
|
|
|
|
|
|
|
# repeat k/v heads if n_kv_heads < n_heads
|
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
|
|
|
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
|
|
|
|
|
|
|
# q, k, v is [B, H, S, K] and xformers need [B, S, H, K]. returns [B, S, H, K]
|
|
|
|
query_states = query_states.transpose(1, 2)
|
|
|
|
key_states = key_states.transpose(1, 2)
|
|
|
|
value_states = value_states.transpose(1, 2)
|
|
|
|
if SUPPORT_FLASH2:
|
|
|
|
attn_output = flash_attn_func(query_states, key_states, value_states, causal=True)
|
|
|
|
else:
|
|
|
|
attn_output = xops.memory_efficient_attention(
|
|
|
|
query_states, key_states, value_states, attn_bias=xops.LowerTriangularMask()
|
|
|
|
)
|
|
|
|
|
|
|
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
|
|
|
|
|
|
|
attn_output = self.o_proj(attn_output)
|
|
|
|
|
|
|
|
if not output_attentions:
|
|
|
|
attn_weights = None
|
|
|
|
|
|
|
|
return attn_output, attn_weights, past_key_value
|
|
|
|
|
|
|
|
|
|
|
|
def replace_xformers(model: nn.Module):
|
|
|
|
for module in model.modules():
|
|
|
|
if isinstance(module, LlamaAttention):
|
|
|
|
module.forward = MethodType(llama_flash_attention, module)
|