mirror of https://github.com/hpcaitech/ColossalAI
52 lines
1.4 KiB
Python
52 lines
1.4 KiB
Python
|
from time import time
|
||
|
from typing import Optional
|
||
|
|
||
|
import torch
|
||
|
import torch.distributed as dist
|
||
|
import torch.nn as nn
|
||
|
|
||
|
from colossalai.utils import is_ddp_ignored
|
||
|
|
||
|
from .manager import ChunkManager
|
||
|
from .search_utils import search_chunk_configuration
|
||
|
|
||
|
|
||
|
def safe_div(a, b):
|
||
|
if a == 0:
|
||
|
return 0
|
||
|
return a / b
|
||
|
|
||
|
|
||
|
def init_chunk_manager(model: nn.Module,
|
||
|
init_device: Optional[torch.device] = None,
|
||
|
hidden_dim: Optional[int] = None,
|
||
|
**kwargs) -> ChunkManager:
|
||
|
if hidden_dim:
|
||
|
search_interval_byte = hidden_dim
|
||
|
else:
|
||
|
search_interval_byte = 1024 # defaults to 1kb
|
||
|
kwargs["search_interval_byte"] = search_interval_byte
|
||
|
|
||
|
dist.barrier()
|
||
|
begin = time()
|
||
|
|
||
|
config_dict, total_size, wasted_size = search_chunk_configuration(model, **kwargs)
|
||
|
|
||
|
dist.barrier()
|
||
|
end = time()
|
||
|
span_s = end - begin
|
||
|
mb_size = 1024**2
|
||
|
total_size /= mb_size
|
||
|
wasted_size /= mb_size
|
||
|
|
||
|
if dist.get_rank() == 0:
|
||
|
print("searching chunk configuration is completed in {:.2f} s.\n".format(span_s),
|
||
|
"used number: {:.2f} MB, wasted number: {:.2f} MB\n".format(total_size, wasted_size),
|
||
|
"total wasted percentage is {:.2f}%".format(100 * safe_div(wasted_size, total_size + wasted_size)),
|
||
|
sep='',
|
||
|
flush=True)
|
||
|
dist.barrier()
|
||
|
|
||
|
chunk_manager = ChunkManager(config_dict, init_device)
|
||
|
return chunk_manager
|