2023-03-21 09:39:30 +00:00
|
|
|
import warnings
|
2023-03-09 03:27:46 +00:00
|
|
|
from contextlib import contextmanager
|
2023-03-21 09:39:30 +00:00
|
|
|
from typing import Callable, Iterator, List, Optional, Tuple, Union
|
2023-03-09 03:27:46 +00:00
|
|
|
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
from torch.optim import Optimizer
|
|
|
|
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler
|
|
|
|
from torch.utils.data import DataLoader
|
|
|
|
|
2023-03-27 02:24:14 +00:00
|
|
|
from colossalai.checkpoint_io import GeneralCheckpointIO
|
|
|
|
|
2023-03-20 05:59:24 +00:00
|
|
|
from .accelerator import Accelerator
|
2023-03-17 03:00:15 +00:00
|
|
|
from .mixed_precision import MixedPrecision, mixed_precision_factory
|
2023-03-09 03:27:46 +00:00
|
|
|
from .plugin import Plugin
|
|
|
|
|
|
|
|
__all__ = ['Booster']
|
|
|
|
|
|
|
|
|
|
|
|
class Booster:
|
2023-03-17 03:00:15 +00:00
|
|
|
"""
|
|
|
|
Booster is a high-level API for training neural networks. It provides a unified interface for
|
|
|
|
training with different precisio, accelerator, and plugin.
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
>>> colossalai.launch(...)
|
|
|
|
>>> plugin = GeminiPlugin(stage=3, ...)
|
|
|
|
>>> booster = Booster(precision='fp16', plugin=plugin)
|
|
|
|
>>>
|
|
|
|
>>> model = GPT2()
|
|
|
|
>>> optimizer = Adam(model.parameters())
|
|
|
|
>>> dataloader = Dataloader(Dataset)
|
|
|
|
>>> lr_scheduler = LinearWarmupScheduler()
|
|
|
|
>>> criterion = GPTLMLoss()
|
|
|
|
>>>
|
|
|
|
>>> model, optimizer, lr_scheduler, dataloader = booster.boost(model, optimizer, lr_scheduler, dataloader)
|
|
|
|
>>>
|
|
|
|
>>> for epoch in range(max_epochs):
|
|
|
|
>>> for input_ids, attention_mask in dataloader:
|
|
|
|
>>> outputs = model(input_ids, attention_mask)
|
|
|
|
>>> loss = criterion(outputs.logits, input_ids)
|
|
|
|
>>> booster.backward(loss, optimizer)
|
|
|
|
>>> optimizer.step()
|
|
|
|
>>> lr_scheduler.step()
|
|
|
|
>>> optimizer.zero_grad()
|
|
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
device (str or torch.device): The device to run the training. Default: 'cuda'.
|
|
|
|
mixed_precision (str or MixedPrecision): The mixed precision to run the training. Default: None.
|
|
|
|
If the argument is a string, it can be 'fp16', 'fp16_apex', 'bf16', or 'fp8'.
|
|
|
|
'fp16' would use PyTorch AMP while `fp16_apex` would use Nvidia Apex.
|
|
|
|
plugin (Plugin): The plugin to run the training. Default: None.
|
|
|
|
"""
|
2023-03-09 03:27:46 +00:00
|
|
|
|
|
|
|
def __init__(self,
|
2023-03-20 05:59:24 +00:00
|
|
|
device: str = 'cuda',
|
2023-03-17 03:00:15 +00:00
|
|
|
mixed_precision: Union[MixedPrecision, str] = None,
|
2023-03-09 03:27:46 +00:00
|
|
|
plugin: Optional[Plugin] = None) -> None:
|
2023-03-21 09:39:30 +00:00
|
|
|
if plugin is not None:
|
|
|
|
assert isinstance(
|
|
|
|
plugin, Plugin), f'Expected the argument plugin to be an instance of Plugin, but got {type(plugin)}.'
|
|
|
|
self.plugin = plugin
|
|
|
|
|
|
|
|
# set accelerator
|
2023-03-27 02:24:14 +00:00
|
|
|
if self.plugin and self.plugin.control_device():
|
2023-03-21 09:39:30 +00:00
|
|
|
self.accelerator = None
|
|
|
|
warnings.warn('The plugin will control the accelerator, so the device argument will be ignored.')
|
2023-03-17 03:00:15 +00:00
|
|
|
else:
|
2023-03-21 09:39:30 +00:00
|
|
|
self.accelerator = Accelerator(device)
|
2023-03-17 03:00:15 +00:00
|
|
|
|
2023-03-21 09:39:30 +00:00
|
|
|
# set precision
|
2023-03-27 02:24:14 +00:00
|
|
|
if self.plugin and self.plugin.control_precision():
|
2023-03-21 09:39:30 +00:00
|
|
|
warnings.warn('The plugin will control the precision, so the mixed_precision argument will be ignored.')
|
2023-03-27 02:24:14 +00:00
|
|
|
self.mixed_precision = None
|
|
|
|
elif mixed_precision is None:
|
|
|
|
self.mixed_precision = None
|
2023-03-21 09:39:30 +00:00
|
|
|
else:
|
|
|
|
# validate and set precision
|
2023-03-27 02:24:14 +00:00
|
|
|
if isinstance(mixed_precision, str):
|
2023-03-21 09:39:30 +00:00
|
|
|
# the user will take the default arguments for amp training
|
|
|
|
self.mixed_precision = mixed_precision_factory(mixed_precision)
|
|
|
|
elif isinstance(mixed_precision, MixedPrecision):
|
|
|
|
# the user can customize the arguments by passing the precision object
|
|
|
|
self.mixed_precision = mixed_precision
|
|
|
|
else:
|
|
|
|
raise ValueError(
|
|
|
|
f'Expected the argument mixed_precision to be a string or an instance of Precision, but got {type(mixed_precision)}.'
|
|
|
|
)
|
|
|
|
|
2023-03-27 02:24:14 +00:00
|
|
|
if self.plugin is not None and self.plugin.control_checkpoint_io():
|
|
|
|
self.checkpoint_io = self.plugin.get_checkpoint_io()
|
|
|
|
else:
|
|
|
|
self.checkpoint_io = GeneralCheckpointIO()
|
|
|
|
|
2023-03-21 09:39:30 +00:00
|
|
|
def boost(
|
|
|
|
self,
|
|
|
|
model: nn.Module,
|
|
|
|
optimizer: Optimizer,
|
|
|
|
criterion: Callable = None,
|
|
|
|
dataloader: DataLoader = None,
|
|
|
|
lr_scheduler: LRScheduler = None,
|
|
|
|
) -> List[Union[nn.Module, Optimizer, LRScheduler, DataLoader]]:
|
2023-03-17 03:00:15 +00:00
|
|
|
"""
|
|
|
|
Boost the model, optimizer, criterion, lr_scheduler, and dataloader.
|
2023-03-09 03:27:46 +00:00
|
|
|
|
2023-03-17 03:00:15 +00:00
|
|
|
Args:
|
|
|
|
model (nn.Module): The model to be boosted.
|
|
|
|
optimizer (Optimizer): The optimizer to be boosted.
|
|
|
|
criterion (Callable): The criterion to be boosted.
|
|
|
|
dataloader (DataLoader): The dataloader to be boosted.
|
2023-03-21 09:39:30 +00:00
|
|
|
lr_scheduler (LRScheduler): The lr_scheduler to be boosted.
|
2023-03-17 03:00:15 +00:00
|
|
|
"""
|
|
|
|
# TODO(FrankLeeeee): consider multi-model and multi-optimizer case
|
2023-03-21 09:39:30 +00:00
|
|
|
# TODO(FrankLeeeee): consider multi-dataloader case
|
2023-03-17 03:00:15 +00:00
|
|
|
# transform model for mixed precision
|
2023-03-21 09:39:30 +00:00
|
|
|
if self.plugin:
|
|
|
|
model, optimizer, criterion, dataloader, lr_scheduler = self.plugin.configure(
|
|
|
|
model, optimizer, criterion, dataloader, lr_scheduler)
|
|
|
|
|
2023-03-27 02:24:14 +00:00
|
|
|
if self.plugin and not self.plugin.control_device():
|
2023-03-21 09:39:30 +00:00
|
|
|
# transform model for accelerator
|
|
|
|
model = self.accelerator.configure(model)
|
|
|
|
|
2023-03-27 02:24:14 +00:00
|
|
|
if self.mixed_precision and (self.plugin is None or self.plugin and not self.plugin.control_precision()):
|
2023-03-21 09:39:30 +00:00
|
|
|
# transform model for mixed precision
|
2023-03-27 02:24:14 +00:00
|
|
|
# when mixed_precision is specified and the plugin is not given or does not control the precision
|
2023-03-21 09:39:30 +00:00
|
|
|
model, optimizer, criterion = self.mixed_precision.configure(model, optimizer, criterion)
|
|
|
|
|
|
|
|
return model, optimizer, criterion, dataloader, lr_scheduler
|
2023-03-09 03:27:46 +00:00
|
|
|
|
|
|
|
def backward(self, loss: torch.Tensor, optimizer: Optimizer) -> None:
|
2023-03-17 03:00:15 +00:00
|
|
|
# TODO: implement this method with plugin
|
|
|
|
optimizer.backward(loss)
|
2023-03-09 03:27:46 +00:00
|
|
|
|
|
|
|
def execute_pipeline(self,
|
|
|
|
data_iter: Iterator,
|
|
|
|
model: nn.Module,
|
|
|
|
criterion: Callable[[torch.Tensor], torch.Tensor],
|
|
|
|
optimizer: Optimizer,
|
|
|
|
return_loss: bool = True,
|
|
|
|
return_outputs: bool = False) -> Tuple[Optional[torch.Tensor], ...]:
|
|
|
|
# TODO: implement this method
|
|
|
|
# run pipeline forward backward pass
|
|
|
|
# return loss or outputs if needed
|
|
|
|
pass
|
|
|
|
|
|
|
|
def no_sync(self, model: nn.Module) -> contextmanager:
|
2023-03-21 09:39:30 +00:00
|
|
|
assert self.plugin is not None, f'no_sync is only enabled when a plugin is provided and the plugin supports no_sync.'
|
|
|
|
assert self.plugin.support_no_sync, f'The plugin {self.plugin.__class__.__name__} does not support no_sync.'
|
|
|
|
return self.plugin.no_sync(model)
|
2023-03-09 03:27:46 +00:00
|
|
|
|
2023-03-27 02:24:14 +00:00
|
|
|
def load_model(self, model: nn.Module, checkpoint: str, strict: bool = True):
|
|
|
|
self.checkpoint_io.load_model(model, checkpoint, strict)
|
2023-03-09 03:27:46 +00:00
|
|
|
|
2023-03-27 02:24:14 +00:00
|
|
|
def save_model(self,
|
|
|
|
model: nn.Module,
|
|
|
|
checkpoint: str,
|
|
|
|
prefix: str = None,
|
|
|
|
shard: bool = False,
|
|
|
|
size_per_shard: int = 1024):
|
|
|
|
self.checkpoint_io.save_model(model, checkpoint, prefix, shard, size_per_shard)
|
|
|
|
|
|
|
|
def load_optimizer(self, optimizer: Optimizer, checkpoint: str):
|
|
|
|
self.checkpoint_io.load_optimizer(optimizer, checkpoint)
|
|
|
|
|
|
|
|
def save_optimizer(self, optimizer: Optimizer, checkpoint: str, shard: bool = False, size_per_shard: int = 1024):
|
|
|
|
self.checkpoint_io.save_optimizer(optimizer, checkpoint, shard, size_per_shard)
|
|
|
|
|
|
|
|
def save_lr_scheduler(self, lr_scheduler: LRScheduler, checkpoint: str):
|
|
|
|
self.checkpoint_io.save_lr_scheduler(lr_scheduler, checkpoint)
|
|
|
|
|
|
|
|
def load_lr_scheduler(self, lr_scheduler: LRScheduler, checkpoint: str):
|
|
|
|
self.checkpoint_io.load_lr_scheduler(lr_scheduler, checkpoint)
|