ColossalAI/tests/test_zero/test_zero_optim_state_dict.py

100 lines
3.6 KiB
Python
Raw Normal View History

import pytest
import colossalai
import torch
import torch.multiprocessing as mp
from colossalai.testing import rerun_if_address_is_in_use
from colossalai.utils.cuda import get_current_device
from colossalai.utils import free_port
from colossalai.utils.model.colo_init_context import ColoInitContext
from colossalai.gemini import ChunkManager
from functools import partial
from tests.components_to_test.registry import non_distributed_component_funcs
from colossalai.nn.parallel import ZeroDDP
from colossalai.nn.optimizer import HybridAdam
from colossalai.zero import ZeroOptimizer
from colossalai.testing import parameterize
from colossalai.gemini.gemini_mgr import GeminiManager
from colossalai.tensor import ProcessGroup
def check_state(s1, s2):
for v1, v2 in zip(s1.values(), s2.values()):
if isinstance(v1, torch.Tensor):
v1 = v1.to(v2.device)
assert torch.equal(v1, v2), f'{torch.sum((v1-v2).abs())}'
else:
assert v1 == v2
def check_load_state_dict(optim, torch_optim):
for group, torch_group in zip(optim.optim.param_groups, torch_optim.param_groups):
for p, torch_p in zip(group['params'], torch_group['params']):
state = optim.optim.state[p]
torch_state = torch_optim.state[torch_p]
if p.storage().size() == 0:
assert len(state) == 0
check_state(state, torch_state)
def check_state_dict(state_dict, torch_state_dict):
for (k1, s1), (k2, s2) in zip(state_dict['state'].items(), torch_state_dict['state'].items()):
assert k1 == k2
check_state(s1, s2)
@parameterize('use_chunk', [False, True])
@parameterize('use_zero', [False, True])
@parameterize('placement_policy', ['cuda', 'cpu', 'auto'])
def run_zero_optim_state_dict(use_chunk, use_zero, placement_policy):
get_components_func = non_distributed_component_funcs.get_callable('gpt2')
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
with ColoInitContext(device=get_current_device()):
model = model_builder()
model = model.cuda()
torch_model = model_builder().cuda()
pg = ProcessGroup()
chunk_size = ChunkManager.search_chunk_size(model, 8192, 8) if use_chunk else None
chunk_manager = ChunkManager(chunk_size,
pg,
enable_distributed_storage=use_zero,
init_device=GeminiManager.get_default_device(placement_policy))
gemini_manager = GeminiManager(placement_policy, chunk_manager)
model = ZeroDDP(model, gemini_manager)
optim = HybridAdam(model.parameters(), lr=1e-3)
optim = ZeroOptimizer(optim, model, initial_scale=1)
torch_optim = torch.optim.Adam(torch_model.parameters(), lr=1e-3)
for p in torch_model.parameters():
p.grad = torch.rand_like(p)
torch_optim.step()
torch_state_dict = torch_optim.state_dict()
optim.load_state_dict(torch_state_dict)
check_load_state_dict(optim, torch_optim)
state_dict = optim.state_dict()
if pg.rank() == 0:
check_state_dict(state_dict, torch_state_dict)
def run_dist(rank, world_size, port):
config = {}
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
run_zero_optim_state_dict()
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [1, 2])
@rerun_if_address_is_in_use()
def test_zero_optim_state_dict(world_size):
run_func = partial(run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_zero_optim_state_dict(2)