ColossalAI/colossalai/kernel/triton/ops.py

209 lines
7.6 KiB
Python
Raw Normal View History

import torch
from torch import nn
try:
import triton
import triton.language as tl
HAS_TRITON = True
except ImportError:
HAS_TRITON = False
print("please install triton from https://github.com/openai/triton")
if HAS_TRITON:
from .qkv_matmul_kernel import qkv_gemm_4d_kernel
from .softmax_kernel import softmax_kernel
def self_attention_forward_without_fusion(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, input_mask: torch.Tensor, scale: float):
r""" A function to do QKV Attention calculation by calling GEMM and softmax triton kernels
Args:
q (torch.Tensor): Q embedding in attention layer, shape should be (batch, seq_len, num_heads, head_size)
k (torch.Tensor): K embedding in attention layer, shape should be (batch, seq_len, num_heads, head_size)
v (torch.Tensor): V embedding in attention layer, shape should be (batch, seq_len, num_heads, head_size)
input_mask (torch.Tensor): mask for softmax layer, shape should be (batch, num_heads, seq_lem, seq_len)
scale: the float scale value which is used to multiply with Q*K^T before doing softmax
Return:
output (Torch.Tensor): The output shape is (batch, seq_len, num_heads, head_size)
"""
assert len(q.shape) == 4, "the shape of q val must be 4"
batches, M, H, K = q.shape
assert q.shape == k.shape, "the shape of q and the shape of k must be equal"
assert q.shape == v.shape, "the shape of q and the shape of v must be equal"
assert q.shape[-1] == k.shape[-1], "the last dimension of q and k must be equal"
N = k.shape[1]
# head_size * num_of_head
d_model = q.shape[-1] * q.shape[-2]
score_output = torch.empty(
(batches, H, M, N), device=q.device, dtype=q.dtype)
grid = lambda meta: (
batches,
H,
triton.cdiv(M, meta["BLOCK_SIZE_M"]) *
triton.cdiv(N, meta["BLOCK_SIZE_N"]),
)
qkv_gemm_4d_kernel[grid](
q, k, score_output,
M, N, K,
q.stride(0), q.stride(2), q.stride(1), q.stride(3),
k.stride(0), k.stride(2), k.stride(3), k.stride(1),
score_output.stride(0), score_output.stride(1), score_output.stride(2), score_output.stride(3),
scale=scale,
# currently manually setting, later on we can use auto-tune config to match best setting
BLOCK_SIZE_M=64,
BLOCK_SIZE_N=32,
BLOCK_SIZE_K=32,
GROUP_SIZE_M=8,
)
softmax_output = torch.empty(
score_output.shape, device=score_output.device, dtype=score_output.dtype)
score_output_shape = score_output.shape
score_output = score_output.view(-1, score_output.shape[-1])
n_rows, n_cols = score_output.shape
if n_rows <= 350000:
block_size = max(triton.next_power_of_2(n_cols), 2)
num_warps = 4
if block_size >= 4096:
num_warps = 16
elif block_size >= 2048:
num_warps = 8
else:
num_warps = 4
softmax_kernel[(n_rows, )](
softmax_output,
score_output,
score_output.stride(0),
n_cols,
mask_ptr = input_mask,
num_warps=num_warps,
BLOCK_SIZE=block_size,
)
else:
#TODO: change softmax kernel functions to make it suitable for large size dimension
softmax_output = torch.nn.functional.softmax(score_output, dim=-1)
softmax_output = softmax_output.view(*score_output_shape)
batches, H, M, K = softmax_output.shape
N = v.shape[-1]
output = torch.empty(
(batches, M, H, N), device=softmax_output.device, dtype=softmax_output.dtype)
grid = lambda meta: (
batches,
H,
triton.cdiv(M, meta["BLOCK_SIZE_M"]) *
triton.cdiv(N, meta["BLOCK_SIZE_N"]),
)
qkv_gemm_4d_kernel[grid](
softmax_output, v, output,
M, N, K,
softmax_output.stride(0),
softmax_output.stride(1),
softmax_output.stride(2),
softmax_output.stride(3),
v.stride(0),
v.stride(2),
v.stride(1),
v.stride(3),
output.stride(0),
output.stride(2),
output.stride(1),
output.stride(3),
BLOCK_SIZE_M=128,
BLOCK_SIZE_N=64,
BLOCK_SIZE_K=64,
GROUP_SIZE_M=8,
scale=-1,
)
return output.view(batches, -1, d_model)
def self_attention_compute_using_triton(qkv,
input_mask,
layer_past,
alibi,
scale,
head_size,
triangular=False,
use_flash=False):
assert qkv.is_contiguous()
assert alibi is None, "current triton self-attention does not support alibi"
batches = qkv.shape[0]
d_model = qkv.shape[-1] // 3
num_of_heads = d_model // head_size
q = qkv[:, :, :d_model]
k = qkv[:, :, d_model:d_model * 2]
v = qkv[:, :, d_model * 2:]
q = q.view(batches, -1, num_of_heads, head_size)
k = k.view(batches, -1, num_of_heads, head_size)
v = v.view(batches, -1, num_of_heads, head_size)
data_output_triton = self_attention_forward_without_fusion(
q, k, v, input_mask, scale)
return data_output_triton
def softmax(input: torch.Tensor, mask: torch.Tensor = None, dim=-1) -> torch.Tensor:
if mask is not None:
assert input[-1] == mask[-1], "the last dimentions should be the same for input and mask"
assert dim == -1 or dim == len(input.shape)-1, "currently softmax layer only support last dimention"
hidden_dim = input.shape[-1]
output = torch.empty_like(input)
input = input.view(-1, hidden_dim)
if mask is not None:
mask = mask.view(-1, hidden_dim)
assert input.shape[0] == mask.shape[0], "the fist dimention of mask and input should be the same"
num_rows, num_cols = input.shape
block_size = max(triton.next_power_of_2(num_cols), 2)
num_warps = 16
if block_size >= 4096:
num_warps = 16
elif block_size >= 2048:
num_warps = 8
else:
num_warps = 4
if num_rows <= 350000:
grid = (num_rows,)
softmax_kernel[grid](output, input, input.stride(0), num_cols, mask, BLOCK_SIZE = block_size, num_warps=num_warps)
else:
grid = lambda meta: ()
grid = lambda meta: (
triton.cdiv(num_rows, meta["BLOCK_M"]),
)
BLOCK_M = 32
if block_size >= 4096:
BLOCK_M = 4
elif block_size >= 2048:
BLOCK_M = 8
softmax_kernel_2[grid](output_ptr = output,
input_ptr = input,
row_stride = input.stride(0),
n_rows = num_rows,
n_cols = num_cols,
mask_ptr = mask,
# currently manually setting up size
BLOCK_M = 32,
BLOCK_SIZE = block_size)
return output