ColossalAI/tests/test_ddp/test_ddp_state_dict.py

78 lines
3.1 KiB
Python
Raw Normal View History

import pytest
import colossalai
import torch
import torch.multiprocessing as mp
from colossalai.testing import rerun_if_address_is_in_use
from colossalai.utils.cuda import get_current_device
from colossalai.utils import free_port
from colossalai.utils.model.colo_init_context import ColoInitContext
from colossalai.gemini import ChunkManager
from functools import partial
from tests.components_to_test.registry import non_distributed_component_funcs
from colossalai.nn.parallel import ZeroDDP, ColoDDP
from colossalai.gemini.gemini_mgr import GeminiManager
from typing import Callable
from collections import OrderedDict
2022-07-08 06:18:30 +00:00
from colossalai.tensor import ProcessGroup, ColoParameter
def check_state_dict_equal(state_dict: OrderedDict, other_state_dict: OrderedDict):
for (k1, t1), (k2, t2) in zip(state_dict.items(), other_state_dict.items()):
assert k1 == k2
assert torch.allclose(t1, t2, atol=1e-3, rtol=1e-3)
def init_ddp(module: torch.nn.Module) -> ColoDDP:
pg = ProcessGroup()
return ColoDDP(module, process_group=pg)
def init_ddpv2(module: torch.nn.Module, use_chunk: bool = False, use_zero: bool = False) -> ZeroDDP:
chunk_size = ChunkManager.search_chunk_size(module, 64, 4) if use_chunk else None
chunk_manager = ChunkManager(chunk_size, enable_distributed_storage=use_zero)
gemini_manager = GeminiManager('cuda', chunk_manager)
pg = ProcessGroup()
return ZeroDDP(module, gemini_manager, process_group=pg)
def run_state_dict(ddp_init_func: Callable[[torch.nn.Module], ColoDDP]):
get_components_func = non_distributed_component_funcs.get_callable('nested_model')
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
torch_model = model_builder().cuda()
with ColoInitContext(device=get_current_device()):
model = model_builder()
model = ddp_init_func(model)
torch_state_dict = torch_model.state_dict()
2022-07-08 06:18:30 +00:00
for param in model.parameters():
if isinstance(param, ColoParameter):
assert param.get_process_group() is not None
model.load_state_dict(torch_state_dict)
2022-07-08 06:18:30 +00:00
for param in model.parameters():
if isinstance(param, ColoParameter):
assert param.get_process_group() is not None
state_dict = model.state_dict()
check_state_dict_equal(torch_state_dict, state_dict)
def run_dist(rank, world_size, port):
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
run_state_dict(init_ddp)
run_state_dict(partial(init_ddpv2, use_chunk=False, use_zero=False))
run_state_dict(partial(init_ddpv2, use_chunk=False, use_zero=True))
run_state_dict(partial(init_ddpv2, use_chunk=True, use_zero=False))
run_state_dict(partial(init_ddpv2, use_chunk=True, use_zero=True))
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [1, 2])
@rerun_if_address_is_in_use()
def test_state_dict(world_size):
run_func = partial(run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_state_dict(2)