|
|
|
"""
|
|
|
|
Doc:
|
|
|
|
Feature:
|
|
|
|
- FastAPI based http server for Colossal-Inference
|
|
|
|
- Completion Service Supported
|
|
|
|
Usage: (for local user)
|
|
|
|
- First, Lauch an API locally. `python3 -m colossalai.inference.server.api_server --model path of your llama2 model`
|
|
|
|
- Second, you can turn to the page `http://127.0.0.1:8000/docs` to check the api
|
|
|
|
- For completion service, you can invoke it by using `curl -X POST http://127.0.0.1:8000/v1/completion \
|
|
|
|
-H 'Content-Type: application/json' \
|
|
|
|
-d '{"prompt":"hello, who are you? ","stream":"False"}'`
|
|
|
|
"""
|
|
|
|
|
|
|
|
import argparse
|
|
|
|
import json
|
|
|
|
|
|
|
|
import uvicorn
|
|
|
|
from fastapi import FastAPI, Request
|
|
|
|
from fastapi.responses import JSONResponse, Response, StreamingResponse
|
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
|
|
|
|
from colossalai.inference.config import InferenceConfig
|
|
|
|
from colossalai.inference.server.chat_service import ChatServing
|
|
|
|
from colossalai.inference.server.completion_service import CompletionServing
|
|
|
|
from colossalai.inference.server.utils import id_generator
|
|
|
|
|
|
|
|
from colossalai.inference.core.async_engine import AsyncInferenceEngine, InferenceEngine # noqa
|
|
|
|
|
|
|
|
TIMEOUT_KEEP_ALIVE = 5 # seconds.
|
|
|
|
supported_models_dict = {"Llama_Models": ("llama2-7b",)}
|
|
|
|
prompt_template_choices = ["llama", "vicuna"]
|
|
|
|
async_engine = None
|
|
|
|
chat_serving = None
|
|
|
|
completion_serving = None
|
|
|
|
|
|
|
|
app = FastAPI()
|
|
|
|
|
|
|
|
|
|
|
|
@app.get("/v0/models")
|
|
|
|
def get_available_models() -> Response:
|
|
|
|
return JSONResponse(supported_models_dict)
|
|
|
|
|
|
|
|
|
|
|
|
@app.post("/generate")
|
|
|
|
async def generate(request: Request) -> Response:
|
|
|
|
"""Generate completion for the request.
|
|
|
|
|
|
|
|
A request should be a JSON object with the following fields:
|
|
|
|
- prompts: the prompts to use for the generation.
|
|
|
|
- stream: whether to stream the results or not.
|
|
|
|
- other fields:
|
|
|
|
"""
|
|
|
|
request_dict = await request.json()
|
|
|
|
prompt = request_dict.pop("prompt")
|
|
|
|
stream = request_dict.pop("stream", "false").lower()
|
|
|
|
|
|
|
|
request_id = id_generator()
|
|
|
|
generation_config = get_generation_config(request_dict)
|
|
|
|
results = engine.generate(request_id, prompt, generation_config=generation_config)
|
|
|
|
|
|
|
|
# Streaming case
|
|
|
|
def stream_results():
|
|
|
|
for request_output in results:
|
|
|
|
ret = {"text": request_output[len(prompt) :]}
|
|
|
|
yield (json.dumps(ret) + "\0").encode("utf-8")
|
|
|
|
|
|
|
|
if stream == "true":
|
|
|
|
return StreamingResponse(stream_results())
|
|
|
|
|
|
|
|
# Non-streaming case
|
|
|
|
final_output = None
|
|
|
|
for request_output in results:
|
|
|
|
if request.is_disconnected():
|
|
|
|
# Abort the request if the client disconnects.
|
|
|
|
engine.abort(request_id)
|
|
|
|
return Response(status_code=499)
|
|
|
|
final_output = request_output[len(prompt) :]
|
|
|
|
|
|
|
|
assert final_output is not None
|
|
|
|
ret = {"text": final_output}
|
|
|
|
return JSONResponse(ret)
|
|
|
|
|
|
|
|
|
|
|
|
@app.post("/v1/completion")
|
|
|
|
async def create_completion(request: Request):
|
|
|
|
request_dict = await request.json()
|
|
|
|
stream = request_dict.pop("stream", "false").lower()
|
|
|
|
generation_config = get_generation_config(request_dict)
|
|
|
|
result = await completion_serving.create_completion(request, generation_config)
|
|
|
|
|
|
|
|
ret = {"request_id": result.request_id, "text": result.output}
|
|
|
|
if stream == "true":
|
|
|
|
return StreamingResponse(content=json.dumps(ret) + "\0", media_type="text/event-stream")
|
|
|
|
else:
|
|
|
|
return JSONResponse(content=ret)
|
|
|
|
|
|
|
|
|
|
|
|
@app.post("/v1/chat")
|
|
|
|
async def create_chat(request: Request):
|
|
|
|
request_dict = await request.json()
|
|
|
|
|
|
|
|
stream = request_dict.get("stream", "false").lower()
|
|
|
|
generation_config = get_generation_config(request_dict)
|
|
|
|
message = await chat_serving.create_chat(request, generation_config)
|
|
|
|
if stream == "true":
|
|
|
|
return StreamingResponse(content=message, media_type="text/event-stream")
|
|
|
|
else:
|
|
|
|
ret = {"role": message.role, "text": message.content}
|
|
|
|
return ret
|
|
|
|
|
|
|
|
|
|
|
|
def get_generation_config(request):
|
|
|
|
generation_config = async_engine.engine.generation_config
|
|
|
|
for arg in request:
|
|
|
|
if hasattr(generation_config, arg):
|
|
|
|
generation_config[arg] = request[arg]
|
|
|
|
return generation_config
|
|
|
|
|
|
|
|
|
|
|
|
def add_engine_config(parser):
|
|
|
|
parser.add_argument("--model", type=str, default="llama2-7b", help="name or path of the huggingface model to use")
|
|
|
|
|
|
|
|
parser.add_argument(
|
|
|
|
"--max-model-len",
|
|
|
|
type=int,
|
|
|
|
default=None,
|
|
|
|
help="model context length. If unspecified, " "will be automatically derived from the model.",
|
|
|
|
)
|
|
|
|
# Parallel arguments
|
|
|
|
parser.add_argument(
|
|
|
|
"--worker-use-ray",
|
|
|
|
action="store_true",
|
|
|
|
help="use Ray for distributed serving, will be " "automatically set when using more than 1 GPU",
|
|
|
|
)
|
|
|
|
|
|
|
|
parser.add_argument("--pipeline-parallel-size", "-pp", type=int, default=1, help="number of pipeline stages")
|
|
|
|
|
|
|
|
parser.add_argument("--tensor-parallel-size", "-tp", type=int, default=1, help="number of tensor parallel replicas")
|
|
|
|
|
|
|
|
# KV cache arguments
|
|
|
|
parser.add_argument("--block-size", type=int, default=16, choices=[8, 16, 32], help="token block size")
|
|
|
|
|
|
|
|
parser.add_argument("--max_batch_size", type=int, default=8, help="maximum number of batch size")
|
|
|
|
|
|
|
|
# generation arguments
|
|
|
|
parser.add_argument(
|
|
|
|
"--prompt_template",
|
|
|
|
choices=prompt_template_choices,
|
|
|
|
default=None,
|
|
|
|
help=f"Allowed choices are {','.join(prompt_template_choices)}. Default to None.",
|
|
|
|
)
|
|
|
|
|
|
|
|
# Quantization settings.
|
|
|
|
parser.add_argument(
|
|
|
|
"--quantization",
|
|
|
|
"-q",
|
|
|
|
type=str,
|
|
|
|
choices=["awq", "gptq", "squeezellm", None],
|
|
|
|
default=None,
|
|
|
|
help="Method used to quantize the weights. If "
|
|
|
|
"None, we first check the `quantization_config` "
|
|
|
|
"attribute in the model config file. If that is "
|
|
|
|
"None, we assume the model weights are not "
|
|
|
|
"quantized and use `dtype` to determine the data "
|
|
|
|
"type of the weights.",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--enforce-eager",
|
|
|
|
action="store_true",
|
|
|
|
help="Always use eager-mode PyTorch. If False, "
|
|
|
|
"will use eager mode and CUDA graph in hybrid "
|
|
|
|
"for maximal performance and flexibility.",
|
|
|
|
)
|
|
|
|
return parser
|
|
|
|
|
|
|
|
|
|
|
|
def parse_args():
|
|
|
|
parser = argparse.ArgumentParser(description="Colossal-Inference API server.")
|
|
|
|
|
|
|
|
parser.add_argument("--host", type=str, default="127.0.0.1")
|
|
|
|
parser.add_argument("--port", type=int, default=8000)
|
|
|
|
parser.add_argument("--ssl-keyfile", type=str, default=None)
|
|
|
|
parser.add_argument("--ssl-certfile", type=str, default=None)
|
|
|
|
parser.add_argument(
|
|
|
|
"--root-path", type=str, default=None, help="FastAPI root_path when app is behind a path based routing proxy"
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--model-name",
|
|
|
|
type=str,
|
|
|
|
default=None,
|
|
|
|
help="The model name used in the API. If not "
|
|
|
|
"specified, the model name will be the same as "
|
|
|
|
"the huggingface name.",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--chat-template",
|
|
|
|
type=str,
|
|
|
|
default=None,
|
|
|
|
help="The file path to the chat template, " "or the template in single-line form " "for the specified model",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--response-role",
|
|
|
|
type=str,
|
|
|
|
default="assistant",
|
|
|
|
help="The role name to return if " "`request.add_generation_prompt=true`.",
|
|
|
|
)
|
|
|
|
parser = add_engine_config(parser)
|
|
|
|
|
|
|
|
return parser.parse_args()
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
args = parse_args()
|
|
|
|
inference_config = InferenceConfig.from_dict(vars(args))
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(args.model)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(args.model)
|
|
|
|
async_engine = AsyncInferenceEngine(
|
|
|
|
start_engine_loop=True, model=model, tokenizer=tokenizer, inference_config=inference_config
|
|
|
|
)
|
|
|
|
engine = async_engine.engine
|
|
|
|
completion_serving = CompletionServing(async_engine, served_model=model.__class__.__name__)
|
|
|
|
chat_serving = ChatServing(
|
|
|
|
async_engine,
|
|
|
|
served_model=model.__class__.__name__,
|
|
|
|
tokenizer=tokenizer,
|
|
|
|
response_role=args.response_role,
|
|
|
|
chat_template=args.chat_template,
|
|
|
|
)
|
|
|
|
app.root_path = args.root_path
|
|
|
|
uvicorn.run(
|
|
|
|
app=app,
|
|
|
|
host=args.host,
|
|
|
|
port=args.port,
|
|
|
|
log_level="debug",
|
|
|
|
timeout_keep_alive=TIMEOUT_KEEP_ALIVE,
|
|
|
|
ssl_keyfile=args.ssl_keyfile,
|
|
|
|
ssl_certfile=args.ssl_certfile,
|
|
|
|
)
|