You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/inference/server/api_server.py

239 lines
8.2 KiB

"""
Doc:
Feature:
- FastAPI based http server for Colossal-Inference
- Completion Service Supported
Usage: (for local user)
- First, Lauch an API locally. `python3 -m colossalai.inference.server.api_server --model path of your llama2 model`
- Second, you can turn to the page `http://127.0.0.1:8000/docs` to check the api
- For completion service, you can invoke it by using `curl -X POST http://127.0.0.1:8000/v1/completion \
-H 'Content-Type: application/json' \
-d '{"prompt":"hello, who are you? ","stream":"False"}'`
"""
import argparse
import json
import uvicorn
from fastapi import FastAPI, Request
from fastapi.responses import JSONResponse, Response, StreamingResponse
from transformers import AutoModelForCausalLM, AutoTokenizer
from colossalai.inference.config import InferenceConfig
from colossalai.inference.server.chat_service import ChatServing
from colossalai.inference.server.completion_service import CompletionServing
from colossalai.inference.server.utils import id_generator
from colossalai.inference.core.async_engine import AsyncInferenceEngine, InferenceEngine # noqa
TIMEOUT_KEEP_ALIVE = 5 # seconds.
supported_models_dict = {"Llama_Models": ("llama2-7b",)}
prompt_template_choices = ["llama", "vicuna"]
async_engine = None
chat_serving = None
completion_serving = None
app = FastAPI()
@app.get("/v0/models")
def get_available_models() -> Response:
return JSONResponse(supported_models_dict)
@app.post("/generate")
async def generate(request: Request) -> Response:
"""Generate completion for the request.
A request should be a JSON object with the following fields:
- prompts: the prompts to use for the generation.
- stream: whether to stream the results or not.
- other fields:
"""
request_dict = await request.json()
prompt = request_dict.pop("prompt")
stream = request_dict.pop("stream", "false").lower()
request_id = id_generator()
generation_config = get_generation_config(request_dict)
results = engine.generate(request_id, prompt, generation_config=generation_config)
# Streaming case
def stream_results():
for request_output in results:
ret = {"text": request_output[len(prompt) :]}
yield (json.dumps(ret) + "\0").encode("utf-8")
if stream == "true":
return StreamingResponse(stream_results())
# Non-streaming case
final_output = None
for request_output in results:
if request.is_disconnected():
# Abort the request if the client disconnects.
engine.abort(request_id)
return Response(status_code=499)
final_output = request_output[len(prompt) :]
assert final_output is not None
ret = {"text": final_output}
return JSONResponse(ret)
@app.post("/v1/completion")
async def create_completion(request: Request):
request_dict = await request.json()
stream = request_dict.pop("stream", "false").lower()
generation_config = get_generation_config(request_dict)
result = await completion_serving.create_completion(request, generation_config)
ret = {"request_id": result.request_id, "text": result.output}
if stream == "true":
return StreamingResponse(content=json.dumps(ret) + "\0", media_type="text/event-stream")
else:
return JSONResponse(content=ret)
@app.post("/v1/chat")
async def create_chat(request: Request):
request_dict = await request.json()
stream = request_dict.get("stream", "false").lower()
generation_config = get_generation_config(request_dict)
message = await chat_serving.create_chat(request, generation_config)
if stream == "true":
return StreamingResponse(content=message, media_type="text/event-stream")
else:
ret = {"role": message.role, "text": message.content}
return ret
def get_generation_config(request):
generation_config = async_engine.engine.generation_config
for arg in request:
if hasattr(generation_config, arg):
generation_config[arg] = request[arg]
return generation_config
def add_engine_config(parser):
parser.add_argument("--model", type=str, default="llama2-7b", help="name or path of the huggingface model to use")
parser.add_argument(
"--max-model-len",
type=int,
default=None,
help="model context length. If unspecified, " "will be automatically derived from the model.",
)
# Parallel arguments
parser.add_argument(
"--worker-use-ray",
action="store_true",
help="use Ray for distributed serving, will be " "automatically set when using more than 1 GPU",
)
parser.add_argument("--pipeline-parallel-size", "-pp", type=int, default=1, help="number of pipeline stages")
parser.add_argument("--tensor-parallel-size", "-tp", type=int, default=1, help="number of tensor parallel replicas")
# KV cache arguments
parser.add_argument("--block-size", type=int, default=16, choices=[8, 16, 32], help="token block size")
parser.add_argument("--max_batch_size", type=int, default=8, help="maximum number of batch size")
# generation arguments
parser.add_argument(
"--prompt_template",
choices=prompt_template_choices,
default=None,
help=f"Allowed choices are {','.join(prompt_template_choices)}. Default to None.",
)
# Quantization settings.
parser.add_argument(
"--quantization",
"-q",
type=str,
choices=["awq", "gptq", "squeezellm", None],
default=None,
help="Method used to quantize the weights. If "
"None, we first check the `quantization_config` "
"attribute in the model config file. If that is "
"None, we assume the model weights are not "
"quantized and use `dtype` to determine the data "
"type of the weights.",
)
parser.add_argument(
"--enforce-eager",
action="store_true",
help="Always use eager-mode PyTorch. If False, "
"will use eager mode and CUDA graph in hybrid "
"for maximal performance and flexibility.",
)
return parser
def parse_args():
parser = argparse.ArgumentParser(description="Colossal-Inference API server.")
parser.add_argument("--host", type=str, default="127.0.0.1")
parser.add_argument("--port", type=int, default=8000)
parser.add_argument("--ssl-keyfile", type=str, default=None)
parser.add_argument("--ssl-certfile", type=str, default=None)
parser.add_argument(
"--root-path", type=str, default=None, help="FastAPI root_path when app is behind a path based routing proxy"
)
parser.add_argument(
"--model-name",
type=str,
default=None,
help="The model name used in the API. If not "
"specified, the model name will be the same as "
"the huggingface name.",
)
parser.add_argument(
"--chat-template",
type=str,
default=None,
help="The file path to the chat template, " "or the template in single-line form " "for the specified model",
)
parser.add_argument(
"--response-role",
type=str,
default="assistant",
help="The role name to return if " "`request.add_generation_prompt=true`.",
)
parser = add_engine_config(parser)
return parser.parse_args()
if __name__ == "__main__":
args = parse_args()
inference_config = InferenceConfig.from_dict(vars(args))
model = AutoModelForCausalLM.from_pretrained(args.model)
tokenizer = AutoTokenizer.from_pretrained(args.model)
async_engine = AsyncInferenceEngine(
start_engine_loop=True, model=model, tokenizer=tokenizer, inference_config=inference_config
)
engine = async_engine.engine
completion_serving = CompletionServing(async_engine, served_model=model.__class__.__name__)
chat_serving = ChatServing(
async_engine,
served_model=model.__class__.__name__,
tokenizer=tokenizer,
response_role=args.response_role,
chat_template=args.chat_template,
)
app.root_path = args.root_path
uvicorn.run(
app=app,
host=args.host,
port=args.port,
log_level="debug",
timeout_keep_alive=TIMEOUT_KEEP_ALIVE,
ssl_keyfile=args.ssl_keyfile,
ssl_certfile=args.ssl_certfile,
)