mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
77 lines
2.3 KiB
77 lines
2.3 KiB
9 months ago
|
import torch
|
||
|
import triton
|
||
9 months ago
|
from vllm._C import ops
|
||
9 months ago
|
|
||
9 months ago
|
from colossalai.kernel.kernel_loader import InferenceOpsLoader
|
||
|
from colossalai.kernel.triton import rotary_embedding
|
||
|
|
||
|
inference_ops = InferenceOpsLoader().load()
|
||
9 months ago
|
|
||
|
BATCH = 16
|
||
|
configs = [
|
||
|
triton.testing.Benchmark(
|
||
|
x_names=["num_tokens"],
|
||
|
x_vals=[2**i for i in range(4, 12)],
|
||
|
line_arg="provider",
|
||
9 months ago
|
line_vals=["triton_func", "colossal_cuda_func", "vllm_cuda_func"],
|
||
|
line_names=["triton_func", "colossal_cuda_func", "vllm_cuda_func"],
|
||
|
styles=[("red", "-"), ("blue", "-"), ("yellow", "-")],
|
||
9 months ago
|
ylabel="ms",
|
||
|
plot_name=f"rotary_emb-batch-{BATCH}",
|
||
|
args={"num_kv_heads": 16},
|
||
|
)
|
||
|
]
|
||
|
|
||
|
|
||
|
def torch_rotary_emb(x, cos, sin):
|
||
|
seq_len, h, dim = x.shape
|
||
|
x0 = x[:, :, 0 : dim // 2]
|
||
|
x1 = x[:, :, dim // 2 : dim]
|
||
|
cos = cos.view((seq_len, 1, dim // 2))
|
||
|
sin = sin.view((seq_len, 1, dim // 2))
|
||
|
o0 = x0 * cos - x1 * sin
|
||
|
o1 = x0 * sin + x1 * cos
|
||
|
return torch.cat((o0, o1), dim=-1)
|
||
|
|
||
|
|
||
|
@triton.testing.perf_report(configs)
|
||
|
def benchmark_rotary_emb(
|
||
|
provider: str,
|
||
|
num_tokens: int,
|
||
|
num_kv_heads: int,
|
||
|
):
|
||
|
warmup = 10
|
||
|
rep = 100
|
||
|
|
||
|
head_dim = 128
|
||
|
dtype = torch.float16
|
||
|
q_shape = (num_tokens, num_kv_heads, head_dim)
|
||
|
q = -2.3 + 0.5 * torch.randn(q_shape, dtype=dtype, device="cuda")
|
||
|
k_shape = (num_tokens, num_kv_heads, head_dim)
|
||
|
k = -2.3 + 0.5 * torch.randn(k_shape, dtype=dtype, device="cuda")
|
||
|
cos_shape = (4096, head_dim // 2)
|
||
|
cos = -1.2 + 0.5 * torch.randn(cos_shape, dtype=dtype, device="cuda")
|
||
|
sin = -2.0 + 0.5 * torch.randn(cos_shape, dtype=dtype, device="cuda")
|
||
|
|
||
9 months ago
|
cos_sin = torch.stack((cos, sin), dim=1).contiguous()
|
||
|
|
||
|
positions = torch.arange(num_tokens).cuda()
|
||
|
|
||
|
if provider == "triton_func":
|
||
|
fn = lambda: rotary_embedding(q, k, cos, sin)
|
||
|
elif provider == "colossal_cuda_func":
|
||
|
fn = lambda: inference_ops.rotary_embedding(q, k, cos, sin)
|
||
|
elif provider == "vllm_cuda_func":
|
||
|
q = q.view(num_tokens, -1)
|
||
|
k = k.view(num_tokens, -1)
|
||
|
fn = lambda: ops.rotary_embedding(positions, q, k, head_dim, cos_sin, True)
|
||
9 months ago
|
else:
|
||
|
raise ValueError("Undefined provider")
|
||
|
|
||
|
ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep)
|
||
|
return ms
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
benchmark_rotary_emb.run(save_path=".", print_data=True)
|