mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
85 lines
2.6 KiB
85 lines
2.6 KiB
12 months ago
|
import json
|
||
|
import os
|
||
|
from typing import Any, Dict, Tuple, Union
|
||
|
|
||
|
import torch
|
||
|
from torch.optim.lr_scheduler import _LRScheduler
|
||
|
from torch.optim.optimizer import Optimizer
|
||
|
|
||
|
from colossalai.booster import Booster
|
||
|
from colossalai.cluster import DistCoordinator
|
||
|
|
||
|
|
||
|
def move_to_cuda(batch, device):
|
||
|
return {k: v.to(device) for k, v in batch.items()}
|
||
|
|
||
|
|
||
|
def load_json(file_path: Union[str, os.PathLike]) -> Dict[str, Any]:
|
||
|
"""
|
||
|
Load file in JSON format
|
||
|
"""
|
||
|
with open(file=file_path, mode="r", encoding="utf-8") as fp:
|
||
|
return json.load(fp)
|
||
|
|
||
|
|
||
|
def save_json(data: Dict[str, Any], file_path: Union[str, os.PathLike]) -> None:
|
||
|
"""
|
||
|
Save as JSON format
|
||
|
"""
|
||
|
with open(file=file_path, mode="w", encoding="utf-8") as fp:
|
||
|
json.dump(data, fp=fp, ensure_ascii=False, indent=4)
|
||
|
|
||
|
|
||
|
def save_checkpoint(
|
||
|
save_dir: Union[str, os.PathLike],
|
||
|
booster: Booster,
|
||
|
model: torch.nn.Module,
|
||
|
optimizer: Optimizer,
|
||
|
lr_scheduler: _LRScheduler,
|
||
|
epoch: int,
|
||
|
step: int,
|
||
|
batch_size: int,
|
||
|
coordinator: DistCoordinator,
|
||
|
) -> None:
|
||
|
"""
|
||
|
Save model checkpoint, optimizer, LR scheduler and intermedidate running states.
|
||
|
"""
|
||
|
|
||
|
save_dir = os.path.join(save_dir, f"epoch-{epoch}_step-{step}")
|
||
|
os.makedirs(os.path.join(save_dir, "modeling"), exist_ok=True)
|
||
|
|
||
|
booster.save_model(model, os.path.join(save_dir, "modeling"), shard=True)
|
||
|
booster.save_optimizer(optimizer, os.path.join(save_dir, "optimizer"), shard=True)
|
||
|
booster.save_lr_scheduler(lr_scheduler, os.path.join(save_dir, "lr_scheduler"))
|
||
|
running_states = {
|
||
|
"epoch": epoch,
|
||
|
"step": step,
|
||
|
"sample_start_index": step * batch_size,
|
||
|
}
|
||
|
if coordinator.is_master():
|
||
|
save_json(running_states, os.path.join(save_dir, "running_states.json"))
|
||
|
|
||
|
|
||
|
def load_checkpoint(
|
||
|
load_dir: Union[str, os.PathLike],
|
||
|
booster: Booster,
|
||
|
model: torch.nn.Module,
|
||
|
optimizer: Optimizer,
|
||
|
lr_scheduler: _LRScheduler,
|
||
|
) -> Tuple[int, int, int]:
|
||
|
"""
|
||
|
Load model checkpoint, optimizer, LR scheduler and intermedidate running states.
|
||
|
"""
|
||
|
|
||
|
# Update booster params states.
|
||
10 months ago
|
booster.load_model(model, os.path.join(load_dir, "modeling"))
|
||
12 months ago
|
booster.load_optimizer(optimizer=optimizer, checkpoint=os.path.join(load_dir, "optimizer"))
|
||
|
booster.load_lr_scheduler(lr_scheduler=lr_scheduler, checkpoint=os.path.join(load_dir, "lr_scheduler"))
|
||
|
|
||
|
running_states = load_json(file_path=os.path.join(load_dir, "running_states.json"))
|
||
|
return (
|
||
|
running_states["epoch"],
|
||
|
running_states["step"],
|
||
|
running_states["sample_start_index"],
|
||
|
)
|