ColossalAI/tests/test_utils/test_activation_checkpointi...

65 lines
2.0 KiB
Python
Raw Normal View History

2021-10-28 16:21:23 +00:00
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import pytest
import torch
import torch.nn.functional as F
from colossalai.context.parallel_mode import ParallelMode
from colossalai.context.random import add_seed, seed, set_mode, reset_seeds
2021-10-28 16:21:23 +00:00
from colossalai.utils import checkpoint
def forward(x, weight):
out = torch.matmul(x, weight)
with seed(ParallelMode.DATA):
out_ = F.dropout(out, p=0.4, training=True)
return out_
2021-10-28 16:21:23 +00:00
@pytest.mark.gpu
2022-07-08 06:18:30 +00:00
@pytest.mark.skip("set seed error")
@pytest.mark.parametrize("cpu_offload", [True, False])
def test_activation_checkpointing(cpu_offload):
# We put initilization here to avoid change cuda rng state below
inputs = torch.rand(2, 2, requires_grad=True, device='cuda')
weight = torch.rand(2, 4, requires_grad=True, device='cuda')
# Get a copy of input tensors
inputs_ = torch.empty(2, 2, requires_grad=True, device='cuda')
inputs_.data.copy_(inputs.data)
weight_ = torch.empty(2, 4, requires_grad=True, device='cuda')
weight_.data.copy_(weight.data)
add_seed(ParallelMode.GLOBAL, 1024)
add_seed(ParallelMode.DATA, 1026)
2021-10-28 16:21:23 +00:00
set_mode(ParallelMode.GLOBAL)
global_cuda_rng_state = torch.cuda.get_rng_state()
set_mode(ParallelMode.DATA)
data_parallel_cuda_rng_state = torch.cuda.get_rng_state()
set_mode(ParallelMode.GLOBAL)
out = forward(inputs, weight)
2021-10-28 16:21:23 +00:00
loss = out.sum()
loss.backward()
# Recover cuda rng states
2021-10-28 16:21:23 +00:00
set_mode(ParallelMode.GLOBAL)
torch.cuda.set_rng_state(global_cuda_rng_state)
set_mode(ParallelMode.DATA)
torch.cuda.set_rng_state(data_parallel_cuda_rng_state)
set_mode(ParallelMode.GLOBAL)
out = checkpoint(forward, cpu_offload, inputs_, weight_)
2021-10-28 16:21:23 +00:00
loss = out.sum()
loss.backward()
assert torch.all(inputs.grad == inputs_.grad), 'Gradient of the input does not match'
2021-12-16 02:32:08 +00:00
torch.cuda.empty_cache()
# as seed manager is singleton
# if we don't reset seeds here,
# other tests will fail if running together with this test
# as other tests can't overwrite the seed set by this test
reset_seeds()