ColossalAI/tests/kit/model_zoo/custom/simple_mlp.py

62 lines
1.7 KiB
Python
Raw Normal View History

[Feature] Distributed optimizers: Lamb, Galore, CAME and Adafactor (#5694) * [feat] Add distributed lamb; minor fixes in DeviceMesh (#5476) * init: add dist lamb; add debiasing for lamb * dist lamb tester mostly done * all tests passed * add comments * all tests passed. Removed debugging statements * moved setup_distributed inside plugin. Added dist layout caching * organize better --------- Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [hotfix] Improve tester precision by removing ZeRO on vanilla lamb (#5576) Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [optim] add distributed came (#5526) * test CAME under LowLevelZeroOptimizer wrapper * test CAME TP row and col pass * test CAME zero pass * came zero add master and worker param id convert * came zero test pass * came zero test pass * test distributed came passed * reform code, Modify some expressions and add comments * minor fix of test came * minor fix of dist_came and test * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * minor fix of dist_came and test * rebase dist-optim * rebase dist-optim * fix remaining comments * add test dist came using booster api --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [optim] Distributed Adafactor (#5484) * [feature] solve conflict; update optimizer readme; * [feature] update optimize readme; * [fix] fix testcase; * [feature] Add transformer-bert to testcase;solve a bug related to indivisible shape (induction in use_zero and tp is row parallel); * [feature] Add transformers_bert model zoo in testcase; * [feature] add user documentation to docs/source/feature. * [feature] add API Reference & Sample to optimizer Readme; add state check for bert exam; * [feature] modify user documentation; * [fix] fix readme format issue; * [fix] add zero=0 in testcase; cached augment in dict; * [fix] fix percision issue; * [feature] add distributed rms; * [feature] remove useless comment in testcase; * [fix] Remove useless test; open zero test; remove fp16 test in bert exam; * [feature] Extract distributed rms function; * [feature] add booster + lowlevelzeroPlugin in test; * [feature] add Start_with_booster_API case in md; add Supporting Information in md; * [fix] Also remove state movement in base adafactor; * [feature] extract factor function; * [feature] add LowLevelZeroPlugin test; * [fix] add tp=False and zero=True in logic; * [fix] fix use zero logic; * [feature] add row residue logic in column parallel factor; * [feature] add check optim state func; * [feature] Remove duplicate logic; * [feature] update optim state check func and percision test bug; * [fix] update/fix optim state; Still exist percision issue; * [fix] Add use_zero check in _rms; Add plugin support info in Readme; Add Dist Adafactor init Info; * [feature] removed print & comments in utils; * [feature] uodate Readme; * [feature] add LowLevelZeroPlugin test with Bert model zoo; * [fix] fix logic in _rms; * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [fix] remove comments in testcase; * [feature] add zh-Han Readme; --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [Feature] refractor dist came; fix percision error; add low level zero test with bert model zoo; (#5676) * [feature] daily update; * [fix] fix dist came; * [feature] refractor dist came; fix percision error; add low level zero test with bert model zoo; * [fix] open rms; fix low level zero test; fix dist came test function name; * [fix] remove redundant test; * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [Feature] Add Galore (Adam, Adafactor) and distributed GaloreAdamW8bit (#5570) * init: add dist lamb; add debiasing for lamb * dist lamb tester mostly done * all tests passed * add comments * all tests passed. Removed debugging statements * moved setup_distributed inside plugin. Added dist layout caching * organize better * update comments * add initial distributed galore * add initial distributed galore * add galore set param utils; change setup_distributed interface * projected grad precision passed * basic precision tests passed * tests passed; located svd precision issue in fwd-bwd; banned these tests * Plugin DP + TP tests passed * move get_shard_dim to d_tensor * add comments * remove useless files * remove useless files * fix zero typo * improve interface * remove moe changes * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix import * fix deepcopy * update came & adafactor to main * fix param map * fix typo --------- Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [Hotfix] Remove one buggy test case from dist_adafactor for now (#5692) Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> --------- Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: chongqichuizi875 <107315010+chongqichuizi875@users.noreply.github.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: duanjunwen <54985467+duanjunwen@users.noreply.github.com> Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
2024-05-14 05:52:45 +00:00
from copy import deepcopy
import torch
import torch.nn as nn
from colossalai.shardformer.layer import Linear1D_Col, Linear1D_Row
from ..registry import model_zoo
_BS = 16
_IN_DIM = 32
_HID_DIM = 128
class Net(nn.Module):
def __init__(self, in_dim=_IN_DIM, hid_dim=_HID_DIM, identity=False, dtype=torch.float32):
super().__init__()
if identity:
self.fc0 = nn.Identity()
else:
self.fc0 = nn.Linear(in_dim, in_dim).to(dtype=dtype)
self.fc1 = nn.Linear(in_dim, hid_dim).to(dtype=dtype)
self.fc2 = nn.Linear(hid_dim, in_dim).to(dtype=dtype)
def forward(self, x):
return self.fc2(self.fc1(self.fc0(x)))
class TPNet(nn.Module):
def __init__(
self,
fc0=nn.Linear(_IN_DIM, _IN_DIM),
fc1=nn.Linear(_IN_DIM, _HID_DIM),
fc2=nn.Linear(_HID_DIM, _IN_DIM),
tp_group=None,
dtype=torch.float32,
):
super().__init__()
self.fc0 = deepcopy(fc0)
self.fc1 = Linear1D_Col.from_native_module(
deepcopy(fc1), process_group=tp_group, gather_output=False, overlap=True, dtype=dtype
)
self.fc2 = Linear1D_Row.from_native_module(
deepcopy(fc2), process_group=tp_group, parallel_input=True, dtype=dtype
)
def forward(self, x):
return self.fc2(self.fc1(self.fc0(x)))
def data_gen():
return torch.randn(_BS, _IN_DIM)
def output_transform(x: torch.Tensor):
return x
model_zoo.register(name="simple_mlp", model_fn=Net, data_gen_fn=data_gen, output_transform_fn=output_transform)
model_zoo.register(name="simple_tp_mlp", model_fn=TPNet, data_gen_fn=data_gen, output_transform_fn=output_transform)