2023-07-20 03:46:05 +00:00
|
|
|
from typing import Dict, List, Optional, Tuple, Union
|
|
|
|
|
|
|
|
import torch
|
|
|
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
|
|
|
from transformers.modeling_outputs import (
|
|
|
|
BaseModelOutputWithPastAndCrossAttentions,
|
|
|
|
CausalLMOutputWithCrossAttentions,
|
|
|
|
QuestionAnsweringModelOutput,
|
|
|
|
SequenceClassifierOutputWithPast,
|
|
|
|
TokenClassifierOutput,
|
|
|
|
)
|
|
|
|
from transformers.models.gpt2.modeling_gpt2 import (
|
|
|
|
GPT2DoubleHeadsModel,
|
|
|
|
GPT2DoubleHeadsModelOutput,
|
|
|
|
GPT2ForQuestionAnswering,
|
|
|
|
GPT2ForSequenceClassification,
|
|
|
|
GPT2ForTokenClassification,
|
|
|
|
GPT2LMHeadModel,
|
|
|
|
GPT2Model,
|
|
|
|
)
|
|
|
|
from transformers.utils import logging
|
|
|
|
|
|
|
|
from colossalai.pipeline.stage_manager import PipelineStageManager
|
2024-03-27 03:19:32 +00:00
|
|
|
from colossalai.shardformer.layer import ColoAttention
|
2023-08-18 03:21:53 +00:00
|
|
|
from colossalai.shardformer.layer._operation import gather_forward_split_backward, split_forward_gather_backward
|
|
|
|
from colossalai.shardformer.shard import ShardConfig
|
2023-07-20 03:46:05 +00:00
|
|
|
|
2024-03-04 08:18:13 +00:00
|
|
|
from ..layer import cross_entropy_1d
|
|
|
|
|
2024-03-27 03:19:32 +00:00
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
def _get_attention_mask(
|
|
|
|
self: GPT2Model,
|
|
|
|
shard_config: ShardConfig,
|
|
|
|
hidden_states: torch.Tensor,
|
|
|
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]],
|
|
|
|
attention_mask: Optional[torch.FloatTensor],
|
|
|
|
encoder_hidden_states: Optional[torch.Tensor],
|
|
|
|
encoder_attention_mask: Optional[torch.FloatTensor],
|
|
|
|
) -> Tuple[Optional[Union[torch.Tensor, dict]], Optional[Union[torch.Tensor, dict]]]:
|
|
|
|
batch_size, seq_len = hidden_states.shape[:2]
|
|
|
|
# If a 2D or 3D attention mask is provided for the cross-attention
|
|
|
|
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
|
|
|
if self.config.add_cross_attention and encoder_hidden_states is not None:
|
|
|
|
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
|
|
|
if shard_config.enable_flash_attention:
|
|
|
|
encoder_attention_mask = ColoAttention.prepare_attn_kwargs(
|
|
|
|
(encoder_batch_size, 1, seq_len, encoder_sequence_length),
|
|
|
|
dtype=hidden_states.dtype,
|
|
|
|
dtype2=encoder_hidden_states.dtype,
|
|
|
|
q_padding_mask=attention_mask,
|
|
|
|
kv_padding_mask=encoder_attention_mask,
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
|
|
|
if encoder_attention_mask is None:
|
|
|
|
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=encoder_hidden_states.device)
|
|
|
|
encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
|
|
|
else:
|
|
|
|
if shard_config.enable_flash_attention:
|
|
|
|
encoder_attention_mask = {"attention_mask": None}
|
|
|
|
else:
|
|
|
|
encoder_attention_mask = None
|
|
|
|
# GPT2Attention mask.
|
|
|
|
past_key_values_length = 0
|
|
|
|
if past_key_values is not None and past_key_values[0] is not None:
|
|
|
|
past_key_values_length = past_key_values[0][0].shape[2]
|
|
|
|
if shard_config.enable_flash_attention:
|
|
|
|
if attention_mask is not None:
|
|
|
|
attention_mask = attention_mask.view(batch_size, -1)
|
|
|
|
attention_mask = ColoAttention.prepare_attn_kwargs(
|
|
|
|
(batch_size, 1, seq_len, seq_len + past_key_values_length),
|
|
|
|
hidden_states.dtype,
|
|
|
|
hidden_states.device,
|
|
|
|
attention_mask,
|
|
|
|
is_causal=True,
|
|
|
|
)
|
|
|
|
elif attention_mask is not None:
|
|
|
|
if batch_size <= 0:
|
|
|
|
raise ValueError("batch_size has to be defined and > 0")
|
|
|
|
attention_mask = attention_mask.view(batch_size, -1)
|
|
|
|
# We create a 3D attention mask from a 2D tensor mask.
|
|
|
|
# Sizes are [batch_size, 1, 1, to_seq_length]
|
|
|
|
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
|
|
|
# this attention mask is more simple than the triangular masking of causal attention
|
|
|
|
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
|
|
|
attention_mask = attention_mask[:, None, None, :]
|
|
|
|
|
|
|
|
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
|
|
|
# masked positions, this operation will create a tensor which is 0.0 for
|
|
|
|
# positions we want to attend and the dtype's smallest value for masked positions.
|
|
|
|
# Since we are adding it to the raw scores before the softmax, this is
|
|
|
|
# effectively the same as removing these entirely.
|
|
|
|
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
|
|
|
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
|
|
|
|
return attention_mask, encoder_attention_mask
|
|
|
|
|
2023-07-20 03:46:05 +00:00
|
|
|
|
|
|
|
class GPT2PipelineForwards:
|
2023-09-19 06:20:26 +00:00
|
|
|
"""
|
2023-07-20 03:46:05 +00:00
|
|
|
This class serves as a micro library for forward function substitution of GPT2 models
|
|
|
|
under pipeline setting.
|
2023-09-19 06:20:26 +00:00
|
|
|
"""
|
2023-07-20 03:46:05 +00:00
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def gpt2_model_forward(
|
2023-09-19 06:20:26 +00:00
|
|
|
self: GPT2Model,
|
|
|
|
input_ids: Optional[torch.LongTensor] = None,
|
|
|
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
|
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
|
|
token_type_ids: Optional[torch.LongTensor] = None,
|
|
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
|
|
head_mask: Optional[torch.FloatTensor] = None,
|
|
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
|
|
encoder_hidden_states: Optional[torch.Tensor] = None,
|
|
|
|
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
|
|
|
use_cache: Optional[bool] = None,
|
|
|
|
output_attentions: Optional[bool] = None,
|
|
|
|
output_hidden_states: Optional[bool] = None,
|
|
|
|
return_dict: Optional[bool] = None,
|
|
|
|
stage_manager: Optional[PipelineStageManager] = None,
|
|
|
|
hidden_states: Optional[torch.FloatTensor] = None,
|
|
|
|
stage_index: Optional[List[int]] = None,
|
|
|
|
shard_config: ShardConfig = None,
|
|
|
|
) -> Union[Dict, Tuple, BaseModelOutputWithPastAndCrossAttentions]:
|
2023-07-20 03:46:05 +00:00
|
|
|
# This function is modified on the basis of transformers.models.gpt2.modeling_gpt2.GPT2Model.forward.
|
|
|
|
# Please refer to original code of transformers for more details.
|
|
|
|
|
2023-07-27 06:53:20 +00:00
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
|
2023-07-20 03:46:05 +00:00
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
|
|
# Preprocess passed in arguments
|
2023-08-14 09:43:33 +00:00
|
|
|
# TODO(baizhou): left the recording kv-value tensors as () or None type, this feature may be added in the future.
|
2023-07-20 03:46:05 +00:00
|
|
|
if past_key_values:
|
2023-09-19 06:20:26 +00:00
|
|
|
logger.warning_once("Non-empty past_key_values is not supported for pipeline models at the moment.")
|
2023-07-20 03:46:05 +00:00
|
|
|
past_key_values = None
|
|
|
|
if output_attentions:
|
2023-09-19 06:20:26 +00:00
|
|
|
logger.warning_once("output_attentions=True is not supported for pipeline models at the moment.")
|
2023-07-20 03:46:05 +00:00
|
|
|
output_attentions = False
|
|
|
|
if output_hidden_states:
|
2023-09-19 06:20:26 +00:00
|
|
|
logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.")
|
2023-07-20 03:46:05 +00:00
|
|
|
output_hidden_states = False
|
|
|
|
if use_cache:
|
2023-09-19 06:20:26 +00:00
|
|
|
logger.warning_once("use_cache=True is not supported for pipeline models at the moment.")
|
2023-07-20 03:46:05 +00:00
|
|
|
use_cache = False
|
|
|
|
|
|
|
|
if stage_manager.is_first_stage():
|
|
|
|
if input_ids is not None and inputs_embeds is not None:
|
|
|
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
|
|
|
elif input_ids is not None:
|
|
|
|
input_shape = input_ids.size()
|
2023-09-11 10:35:03 +00:00
|
|
|
input_ids = input_ids.view(-1, input_shape[-1])
|
2024-03-27 03:19:32 +00:00
|
|
|
input_ids.shape[0]
|
2023-07-20 03:46:05 +00:00
|
|
|
elif inputs_embeds is not None:
|
|
|
|
input_shape = inputs_embeds.size()[:-1]
|
2024-03-27 03:19:32 +00:00
|
|
|
inputs_embeds.shape[0]
|
2023-07-20 03:46:05 +00:00
|
|
|
else:
|
|
|
|
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
|
|
|
|
|
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
|
|
|
if token_type_ids is not None:
|
2023-09-11 10:35:03 +00:00
|
|
|
token_type_ids = token_type_ids.view(-1, input_shape[-1])
|
2023-07-20 03:46:05 +00:00
|
|
|
else:
|
|
|
|
if hidden_states is None:
|
|
|
|
raise ValueError("hidden_states shouldn't be None for stages other than the first stage.")
|
|
|
|
input_shape = hidden_states.size()[:-1]
|
|
|
|
device = hidden_states.device
|
2023-09-11 10:35:03 +00:00
|
|
|
hidden_states = hidden_states.view((-1,) + hidden_states.shape[-2:])
|
2024-03-27 03:19:32 +00:00
|
|
|
hidden_states.shape[0]
|
2023-07-20 03:46:05 +00:00
|
|
|
|
|
|
|
# Prepare head mask if needed
|
|
|
|
# 1.0 in head_mask indicate we keep the head
|
|
|
|
# attention_probs has shape bsz x n_heads x N x N
|
|
|
|
# head_mask has shape n_layer x batch x n_heads x N x N
|
|
|
|
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
|
|
|
|
|
|
|
if stage_manager.is_first_stage():
|
2024-04-24 14:51:50 +00:00
|
|
|
if position_ids is None:
|
2023-09-11 10:35:03 +00:00
|
|
|
position_ids = torch.arange(0, input_shape[-1], dtype=torch.long, device=device)
|
2024-04-24 14:51:50 +00:00
|
|
|
position_ids = position_ids.unsqueeze(0)
|
2023-07-20 03:46:05 +00:00
|
|
|
|
|
|
|
if inputs_embeds is None:
|
|
|
|
inputs_embeds = self.wte(input_ids)
|
|
|
|
position_embeds = self.wpe(position_ids)
|
|
|
|
hidden_states = inputs_embeds + position_embeds
|
|
|
|
if token_type_ids is not None:
|
|
|
|
token_type_embeds = self.wte(token_type_ids)
|
|
|
|
hidden_states = hidden_states + token_type_embeds
|
2023-08-22 09:35:35 +00:00
|
|
|
hidden_states = self.drop(hidden_states)
|
2023-07-20 03:46:05 +00:00
|
|
|
|
|
|
|
output_shape = input_shape + (hidden_states.size(-1),)
|
|
|
|
|
2024-03-27 03:19:32 +00:00
|
|
|
attention_mask, encoder_attention_mask = _get_attention_mask(
|
|
|
|
self,
|
|
|
|
shard_config,
|
|
|
|
hidden_states,
|
|
|
|
past_key_values,
|
|
|
|
attention_mask,
|
|
|
|
encoder_hidden_states,
|
|
|
|
encoder_attention_mask,
|
|
|
|
)
|
|
|
|
|
2023-07-20 03:46:05 +00:00
|
|
|
if self.gradient_checkpointing and self.training:
|
|
|
|
if use_cache:
|
|
|
|
logger.warning_once(
|
2023-09-19 06:20:26 +00:00
|
|
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
|
|
|
)
|
2023-07-20 03:46:05 +00:00
|
|
|
use_cache = False
|
|
|
|
presents = () if use_cache else None
|
|
|
|
all_self_attentions = () if output_attentions else None
|
|
|
|
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
|
|
|
all_hidden_states = () if output_hidden_states else None
|
|
|
|
|
2023-08-18 03:21:53 +00:00
|
|
|
# split the input tensor along sequence dimension
|
|
|
|
# [batch_size, seq_len, hidden_size] -> [batch_size, seq_len/TP_size, hidden_size]
|
2024-04-03 09:15:47 +00:00
|
|
|
if shard_config and shard_config.enable_sequence_parallelism:
|
|
|
|
if shard_config.sequence_parallelism_mode == "split_gather":
|
|
|
|
hidden_states = split_forward_gather_backward(
|
|
|
|
hidden_states,
|
|
|
|
dim=1,
|
|
|
|
process_group=shard_config.tensor_parallel_process_group,
|
|
|
|
)
|
2023-08-18 03:21:53 +00:00
|
|
|
|
2023-07-20 03:46:05 +00:00
|
|
|
# Going through held blocks.
|
|
|
|
start_idx, end_idx = stage_index[0], stage_index[1]
|
|
|
|
for i in range(start_idx, end_idx):
|
|
|
|
block = self.h[i]
|
|
|
|
torch.cuda.set_device(hidden_states.device)
|
|
|
|
# Ensure that attention_mask is always on the same device as hidden_states
|
2024-03-27 03:19:32 +00:00
|
|
|
if torch.is_tensor(attention_mask):
|
2023-07-20 03:46:05 +00:00
|
|
|
attention_mask = attention_mask.to(hidden_states.device)
|
|
|
|
if isinstance(head_mask, torch.Tensor):
|
|
|
|
head_mask = head_mask.to(hidden_states.device)
|
|
|
|
if output_hidden_states:
|
|
|
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
|
|
|
|
|
|
|
if self.gradient_checkpointing and self.training:
|
2024-04-24 14:51:50 +00:00
|
|
|
outputs = self._gradient_checkpointing_func(
|
|
|
|
block.__call__,
|
2023-07-20 03:46:05 +00:00
|
|
|
hidden_states,
|
|
|
|
None,
|
|
|
|
attention_mask,
|
|
|
|
head_mask[i],
|
|
|
|
encoder_hidden_states,
|
|
|
|
encoder_attention_mask,
|
2024-04-24 14:51:50 +00:00
|
|
|
use_cache,
|
|
|
|
output_attentions,
|
2023-07-20 03:46:05 +00:00
|
|
|
)
|
|
|
|
else:
|
|
|
|
outputs = block(
|
|
|
|
hidden_states,
|
|
|
|
layer_past=None,
|
|
|
|
attention_mask=attention_mask,
|
|
|
|
head_mask=head_mask[i],
|
|
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
|
|
use_cache=use_cache,
|
|
|
|
output_attentions=output_attentions,
|
|
|
|
)
|
|
|
|
|
|
|
|
hidden_states = outputs[0]
|
|
|
|
if use_cache is True:
|
|
|
|
presents = presents + (outputs[1],)
|
|
|
|
|
|
|
|
if output_attentions:
|
|
|
|
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
|
|
|
if self.config.add_cross_attention:
|
|
|
|
all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],)
|
|
|
|
|
2023-08-18 03:21:53 +00:00
|
|
|
# When sequence parallelism done, gather the output tensor in forward and split it in backward
|
2024-04-03 09:15:47 +00:00
|
|
|
if shard_config and shard_config.enable_sequence_parallelism:
|
|
|
|
if shard_config.sequence_parallelism_mode == "split_gather":
|
|
|
|
hidden_states = gather_forward_split_backward(
|
|
|
|
hidden_states,
|
|
|
|
dim=1,
|
|
|
|
process_group=shard_config.tensor_parallel_process_group,
|
|
|
|
)
|
2023-08-18 03:21:53 +00:00
|
|
|
|
2023-07-20 03:46:05 +00:00
|
|
|
if stage_manager.is_last_stage():
|
|
|
|
hidden_states = self.ln_f(hidden_states)
|
|
|
|
|
|
|
|
hidden_states = hidden_states.view(output_shape)
|
|
|
|
|
|
|
|
# Add last hidden state
|
|
|
|
if output_hidden_states:
|
|
|
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
|
|
|
|
|
|
|
if stage_manager.is_last_stage():
|
|
|
|
if not return_dict:
|
|
|
|
return tuple(
|
2023-09-19 06:20:26 +00:00
|
|
|
v
|
2024-03-27 03:19:32 +00:00
|
|
|
for v in [
|
|
|
|
hidden_states,
|
|
|
|
presents,
|
|
|
|
all_hidden_states,
|
|
|
|
all_self_attentions,
|
|
|
|
all_cross_attentions,
|
|
|
|
]
|
2023-09-19 06:20:26 +00:00
|
|
|
if v is not None
|
|
|
|
)
|
2023-07-20 03:46:05 +00:00
|
|
|
|
|
|
|
return BaseModelOutputWithPastAndCrossAttentions(
|
|
|
|
last_hidden_state=hidden_states,
|
|
|
|
past_key_values=presents,
|
|
|
|
hidden_states=all_hidden_states,
|
|
|
|
attentions=all_self_attentions,
|
|
|
|
cross_attentions=all_cross_attentions,
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
# always return dict for intermediate stage
|
2023-09-19 06:20:26 +00:00
|
|
|
return {"hidden_states": hidden_states}
|
2023-07-20 03:46:05 +00:00
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def gpt2_lmhead_model_forward(
|
2023-09-19 06:20:26 +00:00
|
|
|
self: GPT2LMHeadModel,
|
|
|
|
input_ids: Optional[torch.LongTensor] = None,
|
|
|
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
|
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
|
|
token_type_ids: Optional[torch.LongTensor] = None,
|
|
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
|
|
head_mask: Optional[torch.FloatTensor] = None,
|
|
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
|
|
encoder_hidden_states: Optional[torch.Tensor] = None,
|
|
|
|
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
|
|
|
labels: Optional[torch.LongTensor] = None,
|
|
|
|
use_cache: Optional[bool] = None,
|
|
|
|
output_attentions: Optional[bool] = None,
|
|
|
|
output_hidden_states: Optional[bool] = None,
|
|
|
|
return_dict: Optional[bool] = None,
|
|
|
|
stage_manager: Optional[PipelineStageManager] = None,
|
|
|
|
hidden_states: Optional[torch.FloatTensor] = None,
|
|
|
|
stage_index: Optional[List[int]] = None,
|
|
|
|
shard_config: ShardConfig = None,
|
|
|
|
) -> Union[Dict, Tuple, CausalLMOutputWithCrossAttentions]:
|
2023-07-20 03:46:05 +00:00
|
|
|
r"""
|
2023-09-19 06:20:26 +00:00
|
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
|
|
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
|
|
|
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
|
|
|
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
|
|
|
|
|
|
|
This function is modified on the basis of transformers.models.gpt2.modeling_gpt2.GPT2LMHeadModel.forward.
|
|
|
|
Please refer to original code of transformers for more details.
|
|
|
|
"""
|
2023-07-20 03:46:05 +00:00
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
|
2023-09-19 06:20:26 +00:00
|
|
|
outputs = GPT2PipelineForwards.gpt2_model_forward(
|
|
|
|
self.transformer,
|
|
|
|
input_ids,
|
|
|
|
past_key_values=past_key_values,
|
|
|
|
attention_mask=attention_mask,
|
|
|
|
token_type_ids=token_type_ids,
|
|
|
|
position_ids=position_ids,
|
|
|
|
head_mask=head_mask,
|
|
|
|
inputs_embeds=inputs_embeds,
|
|
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
|
|
use_cache=use_cache,
|
|
|
|
output_attentions=output_attentions,
|
|
|
|
output_hidden_states=output_hidden_states,
|
|
|
|
return_dict=return_dict,
|
|
|
|
stage_manager=stage_manager,
|
|
|
|
hidden_states=hidden_states,
|
|
|
|
stage_index=stage_index,
|
|
|
|
shard_config=shard_config,
|
|
|
|
)
|
2023-07-20 03:46:05 +00:00
|
|
|
|
|
|
|
# If not at the last stage, return hidden_states as in GPT2Model
|
|
|
|
if not stage_manager.is_last_stage():
|
2023-09-19 06:20:26 +00:00
|
|
|
return {"hidden_states": outputs["hidden_states"]}
|
2023-07-20 03:46:05 +00:00
|
|
|
|
|
|
|
hidden_states = outputs[0]
|
|
|
|
lm_logits = self.lm_head(hidden_states)
|
|
|
|
loss = None
|
|
|
|
if labels is not None:
|
|
|
|
# move labels to correct device to enable model parallelism
|
|
|
|
labels = labels.to(lm_logits.device)
|
|
|
|
# Shift so that tokens < n predict n
|
|
|
|
shift_logits = lm_logits[..., :-1, :].contiguous()
|
|
|
|
shift_labels = labels[..., 1:].contiguous()
|
|
|
|
# Flatten the tokens
|
|
|
|
loss_fct = CrossEntropyLoss()
|
2024-03-04 08:18:13 +00:00
|
|
|
shift_logits = shift_logits.view(-1, shift_logits.size(-1))
|
|
|
|
shift_labels = shift_labels.view(-1)
|
2024-03-25 09:21:51 +00:00
|
|
|
if shard_config.enable_tensor_parallelism and shard_config.parallel_output:
|
2024-03-04 08:18:13 +00:00
|
|
|
loss = cross_entropy_1d(
|
2024-03-27 03:19:32 +00:00
|
|
|
shift_logits,
|
|
|
|
shift_labels,
|
|
|
|
process_group=shard_config.tensor_parallel_process_group,
|
[shardformer] refactor embedding resize (#5603)
* [branch rebase] rebase main to Feature/resize_embedding (#5554)
* fix
* [release] update version (#5411)
* [hotfix] fix typo s/keywrods/keywords etc. (#5429)
* [devops] fix compatibility (#5444)
* [devops] fix compatibility
* [hotfix] update compatibility test on pr
* [devops] fix compatibility
* [devops] record duration during comp test
* [test] decrease test duration
* fix falcon
* [shardformer] fix gathering output when using tensor parallelism (#5431)
* fix
* padding vocab_size when using pipeline parallellism
padding vocab_size when using pipeline parallellism
fix
fix
* fix
* fix
fix
fix
* fix gather output
* fix
* fix
* fix
fix resize embedding
fix resize embedding
* fix resize embedding
fix
* revert
* revert
* revert
* [doc] release Open-Sora 1.0 with model weights (#5468)
* [doc] release Open-Sora 1.0 with model weights
* [doc] release Open-Sora 1.0 with model weights
* [doc] release Open-Sora 1.0 with model weights
* [doc] update open-sora demo (#5479)
* [doc] update open-sora demo
* [doc] update open-sora demo
* [doc] update open-sora demo
* [example] add grok-1 inference (#5485)
* [misc] add submodule
* remove submodule
* [example] support grok-1 tp inference
* [example] add grok-1 inference script
* [example] refactor code
* [example] add grok-1 readme
* [exmaple] add test ci
* [exmaple] update readme
---------
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: digger yu <digger-yu@outlook.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
* [CI] run pre-commit (#5577)
* fix
* [release] update version (#5411)
* [hotfix] fix typo s/keywrods/keywords etc. (#5429)
* [devops] fix compatibility (#5444)
* [devops] fix compatibility
* [hotfix] update compatibility test on pr
* [devops] fix compatibility
* [devops] record duration during comp test
* [test] decrease test duration
* fix falcon
* [shardformer] fix gathering output when using tensor parallelism (#5431)
* fix
* padding vocab_size when using pipeline parallellism
padding vocab_size when using pipeline parallellism
fix
fix
* fix
* fix
fix
fix
* fix gather output
* fix
* fix
* fix
fix resize embedding
fix resize embedding
* fix resize embedding
fix
* revert
* revert
* revert
* [doc] release Open-Sora 1.0 with model weights (#5468)
* [doc] release Open-Sora 1.0 with model weights
* [doc] release Open-Sora 1.0 with model weights
* [doc] release Open-Sora 1.0 with model weights
* [doc] update open-sora demo (#5479)
* [doc] update open-sora demo
* [doc] update open-sora demo
* [doc] update open-sora demo
* [example] add grok-1 inference (#5485)
* [misc] add submodule
* remove submodule
* [example] support grok-1 tp inference
* [example] add grok-1 inference script
* [example] refactor code
* [example] add grok-1 readme
* [exmaple] add test ci
* [exmaple] update readme
* run pre-commit
---------
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: digger yu <digger-yu@outlook.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
* [rebase] rebase main to resize-embedding (#5581)
* [release] grok-1 314b inference (#5490)
* [release] grok-1 inference
* [release] grok-1 inference
* [release] grok-1 inference
* [example] update Grok-1 inference (#5495)
* revise grok-1 example
* remove unused arg in scripts
* prevent re-installing torch
* update readme
* revert modifying colossalai requirements
* add perf
* trivial
* add tokenizer url
* [hotfix] set return_outputs=False in examples and polish code (#5404)
* fix: simplify merge_batch
* fix: use return_outputs=False to eliminate extra memory consumption
* feat: add return_outputs warning
* style: remove `return_outputs=False` as it is the default value
* [release] grok-1 inference benchmark (#5500)
* [release] grok-1 inference benchmark
* [release] grok-1 inference benchmark
* [release] grok-1 inference benchmark
* [release] grok-1 inference benchmark
* [release] grok-1 inference benchmark
* [shardformer]Fix lm parallel. (#5480)
* fix
* padding vocab_size when using pipeline parallellism
padding vocab_size when using pipeline parallellism
fix
fix
* fix
* fix
fix
fix
* fix gather output
* fix
* fix
* fix
fix resize embedding
fix resize embedding
* fix resize embedding
fix
* revert
* revert
* revert
* fix lm forward distribution
* fix
* test ci
* fix
* [fix] fix grok-1 example typo (#5506)
* [devops] fix example test ci (#5504)
* Fix ColoTensorSpec for py11 (#5440)
* fixed layout converter caching and updated tester
* Empty-Commit
* [shardformer] update colo attention to support custom mask (#5510)
* [feature] refactor colo attention (#5462)
* [extension] update api
* [feature] add colo attention
* [feature] update sdpa
* [feature] update npu attention
* [feature] update flash-attn
* [test] add flash attn test
* [test] update flash attn test
* [shardformer] update modeling to fit colo attention (#5465)
* [misc] refactor folder structure
* [shardformer] update llama flash-attn
* [shardformer] fix llama policy
* [devops] update tensornvme install
* [test] update llama test
* [shardformer] update colo attn kernel dispatch
* [shardformer] update blip2
* [shardformer] update chatglm
* [shardformer] update gpt2
* [shardformer] update gptj
* [shardformer] update opt
* [shardformer] update vit
* [shardformer] update colo attention mask prep
* [shardformer] update whisper
* [test] fix shardformer tests (#5514)
* [test] fix shardformer tests
* [test] fix shardformer tests
* [format] applied code formatting on changed files in pull request 5510 (#5517)
Co-authored-by: github-actions <github-actions@github.com>
* [shardformer] fix pipeline forward error if custom layer distribution is used (#5189)
* Use self.[distribute_layers|get_stage_index] to exploit custom layer distribution
* Change static methods for t5 layer distribution to member functions
* Change static methods for whisper layer distribution to member functions
* Replace whisper policy usage with self one
* Fix test case to use non-static layer distribution methods
* fix: fix typo
---------
Co-authored-by: Wenhao Chen <cwher@outlook.com>
* [Fix] Grok-1 use tokenizer from the same pretrained path (#5532)
* [fix] use tokenizer from the same pretrained path
* trust remote code
* [ColossalChat] Update RLHF V2 (#5286)
* Add dpo. Fix sft, ppo, lora. Refactor all
* fix and tested ppo
* 2 nd round refactor
* add ci tests
* fix ci
* fix ci
* fix readme, style
* fix readme style
* fix style, fix benchmark
* reproduce benchmark result, remove useless files
* rename to ColossalChat
* use new image
* fix ci workflow
* fix ci
* use local model/tokenizer for ci tests
* fix ci
* fix ci
* fix ci
* fix ci timeout
* fix rm progress bar. fix ci timeout
* fix ci
* fix ci typo
* remove 3d plugin from ci temporary
* test environment
* cannot save optimizer
* support chat template
* fix readme
* fix path
* test ci locally
* restore build_or_pr
* fix ci data path
* fix benchmark
* fix ci, move ci tests to 3080, disable fast tokenizer
* move ci to 85
* support flash attention 2
* add all-in-one data preparation script. Fix colossal-llama2-chat chat template
* add hardware requirements
* move ci test data
* fix save_model, add unwrap
* fix missing bos
* fix missing bos; support grad accumulation with gemini
* fix ci
* fix ci
* fix ci
* fix llama2 chat template config
* debug sft
* debug sft
* fix colossalai version requirement
* fix ci
* add sanity check to prevent NaN loss
* fix requirements
* add dummy data generation script
* add dummy data generation script
* add dummy data generation script
* add dummy data generation script
* update readme
* update readme
* update readme and ignore
* fix logger bug
* support parallel_output
* modify data preparation logic
* fix tokenization
* update lr
* fix inference
* run pre-commit
---------
Co-authored-by: Tong Li <tong.li352711588@gmail.com>
* [shardformer, pipeline] add `gradient_checkpointing_ratio` and heterogenous shard policy for llama (#5508)
* feat: add `GradientCheckpointConfig` and `PipelineGradientCheckpointConfig`
* feat: apply `GradientCheckpointConfig` to policy and llama_forward
* feat: move `distribute_layer` and `get_stage_index` to PipelineStageManager
* fix: add optional args for `distribute_layer` and `get_stage_index`
* fix: fix changed API calls
* test: update llama tests
* style: polish `GradientCheckpointConfig`
* fix: fix pipeline utils tests
* fix incorrect sharding without zero (#5545)
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [shardformer] Sequence Parallelism Optimization (#5533)
* sequence parallel optimization
* validate sequence parallel in llama (code to be polished)
* shardformer api writing
* integrate sequence parallel in ShardFormer
* fix pp bugs and sp bugs for LlaMa model
* integrating ring-based sequence parallelism into ShardFormer
* [sequence parallelism]: Add fused megatron function
* integrating ring-based sequence parallelism into ShardFormer
---------
Co-authored-by: linsj20 <linsj20@mails.tsinghua.edu.cn>
* fix bugs when useing sp and flashattention together
* fix operation function name
* support flash attention for ulysses-style sp
* clarify sp process group
* fix compatibility bugs in moe plugin
* fix fused linear bugs
* fix linear layer test
* support gpt model all-to-all sp
* modify shard data dimension (meant to be dim=-1)
* support megtron-style sp and distributed attn for llama model
* [shardformer] add megatron sp to llama
* support llama7B 128k with distributed attention
* [shardformer] robustness enhancement
* add block attn
* sp mode 1: keep input as a complete sequence
* fix sp compatability
* finish sp mode 3 support for gpt
* using all_to_all_single when batch size is 1
* support mode 2 sp in gpt2 (#5)
* [shardformer] add megatron sp to llama
* support llama7B 128k with distributed attention
* [shardformer] robustness enhancement
* add block attn
* sp mode 1: keep input as a complete sequence
* fix sp compatability
* refactor ring implementation
* support mode 2 sp in gpt2
* polish code
* enable distributed attn mask when using sp mode 2 and 3 in llama
* automatically enable flash attn when using sp mode 2 and 3 in llama
* inplace attn mask
* add zero2 support for sequence parallel
* polish code
* fix bugs
* fix gemini checkpoint io
* loose tensor checking atol and rtol
* add comment
* fix llama layernorm grad
* fix zero grad
* fix zero grad
* fix conflict
* update split and gather auto grad func
* sequence parallel: inside text split (#6)
* polish code (part 1)
* polish code (part 2)
* polish code (part 2.5)
* polish code (part 3)
* sequence parallel: inside text split
* miscellaneous minor fixes
* polish code
* fix ulysses style ZeRO
* sequence parallel: inside text split
* miscellaneous minor fixes
* disaggregate sp group and dp group for sp
* fix llama and gpt sp
* polish code
* move ulysses grad sync to ddp (#9)
* remove zero_stage and unbind the grad sync for alltoall sp
* add 2d group creation test
* move ulysses grad sync to ddp
* add 2d group creation test
* remove useless code
* change shard config not to enable sp when enable_all_optimizations
* add sp warnings for several model
* remove useless code
---------
Co-authored-by: linsj20 <linsj20@mails.tsinghua.edu.cn>
* [hotfix] quick fixes to make legacy tutorials runnable (#5559)
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [fix] fix typo s/muiti-node /multi-node etc. (#5448)
* [hotfix] fix typo s/get_defualt_parser /get_default_parser (#5548)
* [devops] remove post commit ci (#5566)
* [devops] remove post commit ci
* [misc] run pre-commit on all files
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
---------
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
Co-authored-by: Yuanheng Zhao <54058983+yuanheng-zhao@users.noreply.github.com>
Co-authored-by: Wenhao Chen <cwher@outlook.com>
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: Rocky Duan <dementrock@users.noreply.github.com>
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: github-actions <github-actions@github.com>
Co-authored-by: Insu Jang <insujang@umich.edu>
Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com>
Co-authored-by: Tong Li <tong.li352711588@gmail.com>
Co-authored-by: Zhongkai Zhao <kanezz620@gmail.com>
Co-authored-by: linsj20 <linsj20@mails.tsinghua.edu.cn>
Co-authored-by: digger yu <digger-yu@outlook.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [shardformer]enable padding vocabulary size. (#5489)
* padding vocab_size when using pipeline parallellism
padding vocab_size when using pipeline parallellism
fix
fix
* fix
* fix
fix
fix
* fix gather output
* fix
* fix
* fix
fix resize embedding
fix resize embedding
* fix resize embedding
fix
* revert
* revert
* revert
* padding vocab
* padding vocabe
* fix
* fix
* fxi
* test ci
* fix
fix
fix
fix
* fix
fix
* fix
* fix
* Update hybrid_parallel_plugin.py
fix
fix
fix
* fix
fix
* fix
fix
* fix
* resolve super init
resolve super init
resolve super init
resolve super init
* resolve comments
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* vocab checkpointio
* padding vocab_size when using pipeline parallellism
padding vocab_size when using pipeline parallellism
fix
fix
* fix
fix
fix
* fix
* fix
fix resize embedding
fix resize embedding
* fix resize embedding
fix
* revert
* revert
* padding vocab
* fix
* fix
fix
* fix
fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix ci
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
* cherry-pick
* revert moe modify
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
fix
fix
fix
fix
fix
fix
fix
* resolve comments
resolve comments
resolve comments
resolve comments
resolve comments
* ptensor
ptensor
resolve comments
fix
fix
fix
fix
fix
resolve comments
resolve comments
resolve comments
resolve comments
resolve comments
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix rebase
* fix rebase
---------
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: digger yu <digger-yu@outlook.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
Co-authored-by: Yuanheng Zhao <54058983+yuanheng-zhao@users.noreply.github.com>
Co-authored-by: Wenhao Chen <cwher@outlook.com>
Co-authored-by: Rocky Duan <dementrock@users.noreply.github.com>
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: github-actions <github-actions@github.com>
Co-authored-by: Insu Jang <insujang@umich.edu>
Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com>
Co-authored-by: Tong Li <tong.li352711588@gmail.com>
Co-authored-by: Zhongkai Zhao <kanezz620@gmail.com>
Co-authored-by: linsj20 <linsj20@mails.tsinghua.edu.cn>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2024-04-18 08:10:18 +00:00
|
|
|
vocab_size=self.lm_head.out_features,
|
2024-03-04 08:18:13 +00:00
|
|
|
)
|
|
|
|
else:
|
|
|
|
loss = loss_fct(shift_logits, shift_labels)
|
|
|
|
|
2023-07-20 03:46:05 +00:00
|
|
|
if not return_dict:
|
|
|
|
output = (lm_logits,) + outputs[1:]
|
|
|
|
return ((loss,) + output) if loss is not None else output
|
|
|
|
|
|
|
|
return CausalLMOutputWithCrossAttentions(
|
|
|
|
loss=loss,
|
|
|
|
logits=lm_logits,
|
|
|
|
past_key_values=outputs.past_key_values,
|
|
|
|
hidden_states=outputs.hidden_states,
|
|
|
|
attentions=outputs.attentions,
|
|
|
|
cross_attentions=outputs.cross_attentions,
|
|
|
|
)
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def gpt2_double_heads_model_forward(
|
2023-09-19 06:20:26 +00:00
|
|
|
self: GPT2DoubleHeadsModel,
|
|
|
|
input_ids: Optional[torch.LongTensor] = None,
|
|
|
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
|
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
|
|
token_type_ids: Optional[torch.LongTensor] = None,
|
|
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
|
|
head_mask: Optional[torch.FloatTensor] = None,
|
|
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
|
|
mc_token_ids: Optional[torch.LongTensor] = None,
|
|
|
|
labels: Optional[torch.LongTensor] = None,
|
|
|
|
mc_labels: Optional[torch.LongTensor] = None,
|
|
|
|
use_cache: Optional[bool] = None,
|
|
|
|
output_attentions: Optional[bool] = None,
|
|
|
|
output_hidden_states: Optional[bool] = None,
|
|
|
|
return_dict: Optional[bool] = None,
|
|
|
|
stage_manager: Optional[PipelineStageManager] = None,
|
|
|
|
hidden_states: Optional[torch.FloatTensor] = None,
|
|
|
|
stage_index: Optional[List[int]] = None,
|
|
|
|
shard_config: ShardConfig = None,
|
|
|
|
) -> Union[Dict, Tuple, GPT2DoubleHeadsModelOutput]:
|
2023-07-20 03:46:05 +00:00
|
|
|
r"""
|
|
|
|
mc_token_ids (`torch.LongTensor` of shape `(batch_size, num_choices)`, *optional*, default to index of the last token of the input):
|
|
|
|
Index of the classification token in each input sequence. Selected in the range `[0, input_ids.size(-1) -
|
|
|
|
1]`.
|
|
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
|
|
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
|
|
|
`labels = input_ids`. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`. All labels set to
|
|
|
|
`-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size - 1]`
|
|
|
|
mc_labels (`torch.LongTensor` of shape `(batch_size)`, *optional*):
|
|
|
|
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]`
|
|
|
|
where *num_choices* is the size of the second dimension of the input tensors. (see *input_ids* above)
|
|
|
|
|
|
|
|
This function is modified on the basis of transformers.models.gpt2.modeling_gpt2.GPT2DoubleHeadsModel.forward.
|
|
|
|
Please refer to original code of transformers for more details.
|
|
|
|
```"""
|
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
|
2023-09-19 06:20:26 +00:00
|
|
|
outputs = GPT2PipelineForwards.gpt2_model_forward(
|
|
|
|
self.transformer,
|
|
|
|
input_ids,
|
|
|
|
past_key_values=past_key_values,
|
|
|
|
attention_mask=attention_mask,
|
|
|
|
token_type_ids=token_type_ids,
|
|
|
|
position_ids=position_ids,
|
|
|
|
head_mask=head_mask,
|
|
|
|
inputs_embeds=inputs_embeds,
|
|
|
|
use_cache=use_cache,
|
|
|
|
output_attentions=output_attentions,
|
|
|
|
output_hidden_states=output_hidden_states,
|
|
|
|
return_dict=return_dict,
|
|
|
|
stage_manager=stage_manager,
|
|
|
|
hidden_states=hidden_states,
|
|
|
|
stage_index=stage_index,
|
|
|
|
shard_config=shard_config,
|
|
|
|
)
|
2023-07-20 03:46:05 +00:00
|
|
|
|
|
|
|
# If not at the last stage, return hidden_states as in GPT2Model
|
|
|
|
if not stage_manager.is_last_stage():
|
2023-09-19 06:20:26 +00:00
|
|
|
return {"hidden_states": outputs["hidden_states"]}
|
2023-07-20 03:46:05 +00:00
|
|
|
|
|
|
|
hidden_states = outputs[0]
|
|
|
|
lm_logits = self.lm_head(hidden_states)
|
|
|
|
mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids).squeeze(-1)
|
|
|
|
|
|
|
|
mc_loss = None
|
|
|
|
if mc_labels is not None:
|
|
|
|
loss_fct = CrossEntropyLoss()
|
|
|
|
mc_loss = loss_fct(mc_logits.view(-1, mc_logits.size(-1)), mc_labels.view(-1))
|
|
|
|
lm_loss = None
|
|
|
|
if labels is not None:
|
|
|
|
labels = labels.to(lm_logits.device)
|
|
|
|
shift_logits = lm_logits[..., :-1, :].contiguous()
|
|
|
|
shift_labels = labels[..., 1:].contiguous()
|
|
|
|
loss_fct = CrossEntropyLoss()
|
|
|
|
lm_loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
|
|
|
|
|
|
|
if not return_dict:
|
|
|
|
output = (lm_logits, mc_logits) + outputs[1:]
|
|
|
|
if mc_loss is not None:
|
|
|
|
output = (mc_loss,) + output
|
|
|
|
return ((lm_loss,) + output) if lm_loss is not None else output
|
|
|
|
|
|
|
|
return GPT2DoubleHeadsModelOutput(
|
|
|
|
loss=lm_loss,
|
|
|
|
mc_loss=mc_loss,
|
|
|
|
logits=lm_logits,
|
|
|
|
mc_logits=mc_logits,
|
|
|
|
past_key_values=outputs.past_key_values,
|
|
|
|
hidden_states=outputs.hidden_states,
|
|
|
|
attentions=outputs.attentions,
|
|
|
|
)
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def gpt2_for_question_answering_forward(
|
2023-09-19 06:20:26 +00:00
|
|
|
self: GPT2ForQuestionAnswering,
|
|
|
|
input_ids: Optional[torch.LongTensor] = None,
|
|
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
|
|
token_type_ids: Optional[torch.LongTensor] = None,
|
|
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
|
|
head_mask: Optional[torch.FloatTensor] = None,
|
|
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
|
|
start_positions: Optional[torch.LongTensor] = None,
|
|
|
|
end_positions: Optional[torch.LongTensor] = None,
|
|
|
|
output_attentions: Optional[bool] = None,
|
|
|
|
output_hidden_states: Optional[bool] = None,
|
|
|
|
return_dict: Optional[bool] = None,
|
|
|
|
stage_manager: Optional[PipelineStageManager] = None,
|
|
|
|
hidden_states: Optional[torch.FloatTensor] = None,
|
|
|
|
stage_index: Optional[List[int]] = None,
|
|
|
|
shard_config: ShardConfig = None,
|
|
|
|
) -> Union[Dict, Tuple, QuestionAnsweringModelOutput]:
|
2023-07-20 03:46:05 +00:00
|
|
|
r"""
|
|
|
|
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
|
|
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
|
|
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
|
|
|
are not taken into account for computing the loss.
|
|
|
|
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
|
|
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
|
|
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
|
|
|
are not taken into account for computing the loss.
|
|
|
|
|
|
|
|
# This function is modified on the basis of transformers.models.gpt2.modeling_gpt2.GPT2ForQuestionAnswering.forward.
|
|
|
|
# Please refer to original code of transformers for more details.
|
|
|
|
"""
|
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
|
2023-09-19 06:20:26 +00:00
|
|
|
outputs = GPT2PipelineForwards.gpt2_model_forward(
|
|
|
|
self.transformer,
|
|
|
|
input_ids,
|
|
|
|
attention_mask=attention_mask,
|
|
|
|
token_type_ids=token_type_ids,
|
|
|
|
position_ids=position_ids,
|
|
|
|
head_mask=head_mask,
|
|
|
|
inputs_embeds=inputs_embeds,
|
|
|
|
output_attentions=output_attentions,
|
|
|
|
output_hidden_states=output_hidden_states,
|
|
|
|
return_dict=return_dict,
|
|
|
|
stage_manager=stage_manager,
|
|
|
|
hidden_states=hidden_states,
|
|
|
|
stage_index=stage_index,
|
|
|
|
shard_config=shard_config,
|
|
|
|
)
|
2023-07-20 03:46:05 +00:00
|
|
|
|
|
|
|
# If not at the last stage, return hidden_states as in GPT2Model
|
|
|
|
if not stage_manager.is_last_stage():
|
2023-09-19 06:20:26 +00:00
|
|
|
return {"hidden_states": outputs["hidden_states"]}
|
2023-07-20 03:46:05 +00:00
|
|
|
|
|
|
|
sequence_output = outputs[0]
|
|
|
|
|
|
|
|
logits = self.qa_outputs(sequence_output)
|
|
|
|
start_logits, end_logits = logits.split(1, dim=-1)
|
|
|
|
start_logits = start_logits.squeeze(-1).contiguous()
|
|
|
|
end_logits = end_logits.squeeze(-1).contiguous()
|
|
|
|
|
|
|
|
total_loss = None
|
|
|
|
if start_positions is not None and end_positions is not None:
|
|
|
|
# If we are on multi-GPU, split add a dimension
|
|
|
|
if len(start_positions.size()) > 1:
|
|
|
|
start_positions = start_positions.squeeze(-1).to(start_logits.device)
|
|
|
|
if len(end_positions.size()) > 1:
|
|
|
|
end_positions = end_positions.squeeze(-1).to(end_logits.device)
|
|
|
|
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
|
|
|
ignored_index = start_logits.size(1)
|
|
|
|
start_positions = start_positions.clamp(0, ignored_index)
|
|
|
|
end_positions = end_positions.clamp(0, ignored_index)
|
|
|
|
|
|
|
|
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
|
|
|
start_loss = loss_fct(start_logits, start_positions)
|
|
|
|
end_loss = loss_fct(end_logits, end_positions)
|
|
|
|
total_loss = (start_loss + end_loss) / 2
|
|
|
|
|
|
|
|
if not return_dict:
|
|
|
|
output = (start_logits, end_logits) + outputs[2:]
|
|
|
|
return ((total_loss,) + output) if total_loss is not None else output
|
|
|
|
|
|
|
|
return QuestionAnsweringModelOutput(
|
|
|
|
loss=total_loss,
|
|
|
|
start_logits=start_logits,
|
|
|
|
end_logits=end_logits,
|
|
|
|
hidden_states=outputs.hidden_states,
|
|
|
|
attentions=outputs.attentions,
|
|
|
|
)
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def gpt2_for_token_classification_forward(
|
2023-09-19 06:20:26 +00:00
|
|
|
self: GPT2ForTokenClassification,
|
|
|
|
input_ids: Optional[torch.LongTensor] = None,
|
|
|
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
|
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
|
|
token_type_ids: Optional[torch.LongTensor] = None,
|
|
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
|
|
head_mask: Optional[torch.FloatTensor] = None,
|
|
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
|
|
labels: Optional[torch.LongTensor] = None,
|
|
|
|
use_cache: Optional[bool] = None,
|
|
|
|
output_attentions: Optional[bool] = None,
|
|
|
|
output_hidden_states: Optional[bool] = None,
|
|
|
|
return_dict: Optional[bool] = None,
|
|
|
|
stage_manager: Optional[PipelineStageManager] = None,
|
|
|
|
hidden_states: Optional[torch.FloatTensor] = None,
|
|
|
|
stage_index: Optional[List[int]] = None,
|
|
|
|
shard_config: ShardConfig = None,
|
|
|
|
) -> Union[Dict, Tuple, TokenClassifierOutput]:
|
2023-07-20 03:46:05 +00:00
|
|
|
r"""
|
|
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
|
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
|
|
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
|
|
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
|
|
|
|
|
|
|
# This function is modified on the basis of transformers.models.gpt2.modeling_gpt2.GPT2ForTokenClassification.forward.
|
|
|
|
# Please refer to original code of transformers for more details.
|
|
|
|
"""
|
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
|
2023-09-19 06:20:26 +00:00
|
|
|
outputs = GPT2PipelineForwards.gpt2_model_forward(
|
|
|
|
self.transformer,
|
|
|
|
input_ids,
|
|
|
|
past_key_values=past_key_values,
|
|
|
|
attention_mask=attention_mask,
|
|
|
|
token_type_ids=token_type_ids,
|
|
|
|
position_ids=position_ids,
|
|
|
|
head_mask=head_mask,
|
|
|
|
inputs_embeds=inputs_embeds,
|
|
|
|
use_cache=use_cache,
|
|
|
|
output_attentions=output_attentions,
|
|
|
|
output_hidden_states=output_hidden_states,
|
|
|
|
return_dict=return_dict,
|
|
|
|
stage_manager=stage_manager,
|
|
|
|
hidden_states=hidden_states,
|
|
|
|
stage_index=stage_index,
|
|
|
|
shard_config=shard_config,
|
|
|
|
)
|
2023-07-20 03:46:05 +00:00
|
|
|
|
|
|
|
# If not at the last stage, return hidden_states as in GPT2Model
|
|
|
|
if not stage_manager.is_last_stage():
|
2023-09-19 06:20:26 +00:00
|
|
|
return {"hidden_states": outputs["hidden_states"]}
|
2023-07-20 03:46:05 +00:00
|
|
|
|
|
|
|
hidden_states = outputs[0]
|
|
|
|
hidden_states = self.dropout(hidden_states)
|
|
|
|
logits = self.classifier(hidden_states)
|
|
|
|
|
|
|
|
loss = None
|
|
|
|
if labels is not None:
|
|
|
|
labels = labels.to(logits.device)
|
|
|
|
loss_fct = CrossEntropyLoss()
|
|
|
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
|
|
|
|
|
|
|
if not return_dict:
|
|
|
|
output = (logits,) + outputs[2:]
|
|
|
|
return ((loss,) + output) if loss is not None else output
|
|
|
|
|
|
|
|
return TokenClassifierOutput(
|
|
|
|
loss=loss,
|
|
|
|
logits=logits,
|
|
|
|
hidden_states=outputs.hidden_states,
|
|
|
|
attentions=outputs.attentions,
|
|
|
|
)
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def gpt2_for_sequence_classification_forward(
|
2023-09-19 06:20:26 +00:00
|
|
|
self: GPT2ForSequenceClassification,
|
|
|
|
input_ids: Optional[torch.LongTensor] = None,
|
|
|
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
|
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
|
|
token_type_ids: Optional[torch.LongTensor] = None,
|
|
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
|
|
head_mask: Optional[torch.FloatTensor] = None,
|
|
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
|
|
labels: Optional[torch.LongTensor] = None,
|
|
|
|
use_cache: Optional[bool] = None,
|
|
|
|
output_attentions: Optional[bool] = None,
|
|
|
|
output_hidden_states: Optional[bool] = None,
|
|
|
|
return_dict: Optional[bool] = None,
|
|
|
|
stage_manager: Optional[PipelineStageManager] = None,
|
|
|
|
hidden_states: Optional[torch.FloatTensor] = None,
|
|
|
|
stage_index: Optional[List[int]] = None,
|
|
|
|
shard_config: ShardConfig = None,
|
|
|
|
) -> Union[Dict, Tuple, SequenceClassifierOutputWithPast]:
|
2023-07-20 03:46:05 +00:00
|
|
|
r"""
|
|
|
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
|
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
|
|
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
|
|
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
|
|
|
|
|
|
|
# This function is modified on the basis of transformers.models.gpt2.modeling_gpt2.GPT2ForSequenceClassification.forward.
|
|
|
|
# Please refer to original code of transformers for more details.
|
2023-09-19 06:20:26 +00:00
|
|
|
"""
|
2023-07-20 03:46:05 +00:00
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
|
|
if input_ids is not None:
|
|
|
|
batch_size, _ = input_ids.shape[:2]
|
|
|
|
else:
|
|
|
|
batch_size, _ = hidden_states.shape[:2]
|
2023-09-19 06:20:26 +00:00
|
|
|
assert (
|
|
|
|
self.config.pad_token_id is not None or batch_size == 1
|
|
|
|
), "Cannot handle batch sizes > 1 if no padding token is defined."
|
2023-07-20 03:46:05 +00:00
|
|
|
|
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
|
2023-09-19 06:20:26 +00:00
|
|
|
outputs = GPT2PipelineForwards.gpt2_model_forward(
|
|
|
|
self.transformer,
|
|
|
|
input_ids,
|
|
|
|
past_key_values=past_key_values,
|
|
|
|
attention_mask=attention_mask,
|
|
|
|
token_type_ids=token_type_ids,
|
|
|
|
position_ids=position_ids,
|
|
|
|
head_mask=head_mask,
|
|
|
|
inputs_embeds=inputs_embeds,
|
|
|
|
use_cache=use_cache,
|
|
|
|
output_attentions=output_attentions,
|
|
|
|
output_hidden_states=output_hidden_states,
|
|
|
|
return_dict=return_dict,
|
|
|
|
stage_manager=stage_manager,
|
|
|
|
hidden_states=hidden_states,
|
|
|
|
stage_index=stage_index,
|
|
|
|
shard_config=shard_config,
|
|
|
|
)
|
2023-07-20 03:46:05 +00:00
|
|
|
|
|
|
|
# If not at the last stage, return hidden_states as in GPT2Model
|
|
|
|
if not stage_manager.is_last_stage():
|
2023-09-19 06:20:26 +00:00
|
|
|
return {"hidden_states": outputs["hidden_states"]}
|
2023-07-20 03:46:05 +00:00
|
|
|
|
|
|
|
hidden_states = outputs[0]
|
|
|
|
logits = self.score(hidden_states)
|
|
|
|
|
|
|
|
if self.config.pad_token_id is None:
|
|
|
|
sequence_lengths = -1
|
|
|
|
else:
|
|
|
|
if input_ids is not None:
|
|
|
|
sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
|
|
|
|
else:
|
|
|
|
sequence_lengths = -1
|
|
|
|
logger.warning_once(
|
|
|
|
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
2023-09-19 06:20:26 +00:00
|
|
|
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
|
|
|
)
|
2023-07-20 03:46:05 +00:00
|
|
|
|
|
|
|
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
|
|
|
|
|
|
|
loss = None
|
|
|
|
if labels is not None:
|
|
|
|
if self.config.problem_type is None:
|
|
|
|
if self.num_labels == 1:
|
|
|
|
self.config.problem_type = "regression"
|
|
|
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
|
|
|
self.config.problem_type = "single_label_classification"
|
|
|
|
else:
|
|
|
|
self.config.problem_type = "multi_label_classification"
|
|
|
|
|
|
|
|
if self.config.problem_type == "regression":
|
|
|
|
loss_fct = MSELoss()
|
|
|
|
if self.num_labels == 1:
|
|
|
|
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
|
|
|
else:
|
|
|
|
loss = loss_fct(pooled_logits, labels)
|
|
|
|
elif self.config.problem_type == "single_label_classification":
|
|
|
|
loss_fct = CrossEntropyLoss()
|
|
|
|
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
|
|
|
elif self.config.problem_type == "multi_label_classification":
|
|
|
|
loss_fct = BCEWithLogitsLoss()
|
|
|
|
loss = loss_fct(pooled_logits, labels)
|
|
|
|
if not return_dict:
|
|
|
|
output = (pooled_logits,) + outputs[1:]
|
|
|
|
return ((loss,) + output) if loss is not None else output
|
|
|
|
|
|
|
|
return SequenceClassifierOutputWithPast(
|
|
|
|
loss=loss,
|
|
|
|
logits=pooled_logits,
|
|
|
|
past_key_values=outputs.past_key_values,
|
|
|
|
hidden_states=outputs.hidden_states,
|
|
|
|
attentions=outputs.attentions,
|
|
|
|
)
|
2023-08-07 08:41:07 +00:00
|
|
|
|
|
|
|
|
|
|
|
def get_gpt2_flash_attention_forward():
|
|
|
|
from transformers.models.gpt2.modeling_gpt2 import GPT2Attention
|
|
|
|
|
|
|
|
def forward(
|
|
|
|
self: GPT2Attention,
|
|
|
|
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
|
|
|
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
2024-03-27 03:19:32 +00:00
|
|
|
attention_mask: Optional[dict] = None,
|
2023-08-07 08:41:07 +00:00
|
|
|
head_mask: Optional[torch.FloatTensor] = None,
|
|
|
|
encoder_hidden_states: Optional[torch.Tensor] = None,
|
2024-03-27 03:19:32 +00:00
|
|
|
encoder_attention_mask: Optional[dict] = None,
|
2023-08-07 08:41:07 +00:00
|
|
|
use_cache: Optional[bool] = False,
|
|
|
|
output_attentions: Optional[bool] = False,
|
|
|
|
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]:
|
2024-03-27 03:19:32 +00:00
|
|
|
assert head_mask is None, "FlashAttention does not support head_mask"
|
2023-08-07 08:41:07 +00:00
|
|
|
if encoder_hidden_states is not None:
|
|
|
|
if not hasattr(self, "q_attn"):
|
|
|
|
raise ValueError(
|
|
|
|
"If class is used as cross attention, the weights `q_attn` have to be defined. "
|
2023-09-19 06:20:26 +00:00
|
|
|
"Please make sure to instantiate class with `GPT2Attention(..., is_cross_attention=True)`."
|
|
|
|
)
|
2023-08-07 08:41:07 +00:00
|
|
|
|
|
|
|
query = self.q_attn(hidden_states)
|
|
|
|
key, value = self.c_attn(encoder_hidden_states).split(self.split_size, dim=2)
|
|
|
|
attention_mask = encoder_attention_mask
|
|
|
|
else:
|
|
|
|
query, key, value = self.c_attn(hidden_states).split(self.split_size, dim=2)
|
2024-03-27 03:19:32 +00:00
|
|
|
query = self._split_heads(query, self.num_heads, self.head_dim)
|
|
|
|
key = self._split_heads(key, self.num_heads, self.head_dim)
|
|
|
|
value = self._split_heads(value, self.num_heads, self.head_dim)
|
2023-08-07 08:41:07 +00:00
|
|
|
|
|
|
|
if layer_past is not None:
|
|
|
|
past_key, past_value = layer_past
|
|
|
|
key = torch.cat((past_key, key), dim=1)
|
|
|
|
value = torch.cat((past_value, value), dim=1)
|
|
|
|
|
|
|
|
if use_cache is True:
|
|
|
|
present = (key, value)
|
|
|
|
else:
|
|
|
|
present = None
|
|
|
|
|
2024-03-27 03:19:32 +00:00
|
|
|
scale = 1.0
|
|
|
|
if self.scale_attn_weights:
|
|
|
|
scale /= value.size(-1) ** 0.5
|
2023-08-07 08:41:07 +00:00
|
|
|
if self.scale_attn_by_inverse_layer_idx:
|
2024-03-27 03:19:32 +00:00
|
|
|
scale /= float(self.layer_idx + 1)
|
|
|
|
dropout_p = self.attn_dropout.p if self.training else 0.0
|
|
|
|
attn_output = ColoAttention.attention(query, key, value, **attention_mask, dropout_p=dropout_p, scale=scale)
|
|
|
|
attn_output = self._merge_heads(attn_output, self.num_heads, self.head_dim)
|
2023-08-07 08:41:07 +00:00
|
|
|
attn_output = self.c_proj(attn_output)
|
|
|
|
attn_output = self.resid_dropout(attn_output)
|
|
|
|
outputs = (attn_output, present, None)
|
|
|
|
|
|
|
|
return outputs
|
|
|
|
|
|
|
|
return forward
|
2023-08-18 03:21:53 +00:00
|
|
|
|
|
|
|
|
2024-03-27 03:19:32 +00:00
|
|
|
def get_gpt_model_forward_for_flash_attn(shard_config: ShardConfig):
|
2023-08-18 03:21:53 +00:00
|
|
|
def forward(
|
2024-03-27 03:19:32 +00:00
|
|
|
self: GPT2Model,
|
2023-08-18 03:21:53 +00:00
|
|
|
input_ids: Optional[torch.LongTensor] = None,
|
|
|
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
|
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
|
|
token_type_ids: Optional[torch.LongTensor] = None,
|
|
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
|
|
head_mask: Optional[torch.FloatTensor] = None,
|
|
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
|
|
encoder_hidden_states: Optional[torch.Tensor] = None,
|
|
|
|
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
|
|
|
use_cache: Optional[bool] = None,
|
|
|
|
output_attentions: Optional[bool] = None,
|
|
|
|
output_hidden_states: Optional[bool] = None,
|
|
|
|
return_dict: Optional[bool] = None,
|
|
|
|
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
|
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
2023-09-19 06:20:26 +00:00
|
|
|
output_hidden_states = (
|
|
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
|
|
)
|
2023-08-18 03:21:53 +00:00
|
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
|
|
|
|
if input_ids is not None and inputs_embeds is not None:
|
|
|
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
|
|
|
elif input_ids is not None:
|
2024-03-27 03:19:32 +00:00
|
|
|
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
2023-08-18 03:21:53 +00:00
|
|
|
input_shape = input_ids.size()
|
|
|
|
input_ids = input_ids.view(-1, input_shape[-1])
|
2024-03-27 03:19:32 +00:00
|
|
|
input_ids.shape[0]
|
2023-08-18 03:21:53 +00:00
|
|
|
elif inputs_embeds is not None:
|
|
|
|
input_shape = inputs_embeds.size()[:-1]
|
2024-03-27 03:19:32 +00:00
|
|
|
inputs_embeds.shape[0]
|
2023-08-18 03:21:53 +00:00
|
|
|
else:
|
|
|
|
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
|
|
|
|
|
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
|
|
|
|
|
|
|
if token_type_ids is not None:
|
|
|
|
token_type_ids = token_type_ids.view(-1, input_shape[-1])
|
|
|
|
if position_ids is not None:
|
|
|
|
position_ids = position_ids.view(-1, input_shape[-1])
|
|
|
|
|
|
|
|
if past_key_values is None:
|
|
|
|
past_length = 0
|
|
|
|
past_key_values = tuple([None] * len(self.h))
|
|
|
|
else:
|
|
|
|
past_length = past_key_values[0][0].size(-2)
|
|
|
|
if position_ids is None:
|
2024-03-27 03:19:32 +00:00
|
|
|
position_ids = torch.arange(
|
|
|
|
past_length,
|
|
|
|
input_shape[-1] + past_length,
|
|
|
|
dtype=torch.long,
|
|
|
|
device=device,
|
|
|
|
)
|
2023-08-18 03:21:53 +00:00
|
|
|
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
|
|
|
|
|
2024-03-27 03:19:32 +00:00
|
|
|
# Prepare head mask if needed
|
|
|
|
# 1.0 in head_mask indicate we keep the head
|
|
|
|
# attention_probs has shape bsz x n_heads x N x N
|
|
|
|
# head_mask has shape n_layer x batch x n_heads x N x N
|
|
|
|
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
|
|
|
|
|
|
|
if inputs_embeds is None:
|
|
|
|
inputs_embeds = self.wte(input_ids)
|
|
|
|
position_embeds = self.wpe(position_ids)
|
|
|
|
hidden_states = inputs_embeds + position_embeds
|
|
|
|
|
|
|
|
if token_type_ids is not None:
|
|
|
|
token_type_embeds = self.wte(token_type_ids)
|
|
|
|
hidden_states = hidden_states + token_type_embeds
|
|
|
|
|
|
|
|
hidden_states = self.drop(hidden_states)
|
|
|
|
|
|
|
|
output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),)
|
|
|
|
|
|
|
|
attention_mask, encoder_attention_mask = _get_attention_mask(
|
|
|
|
self,
|
|
|
|
shard_config,
|
|
|
|
hidden_states,
|
|
|
|
past_key_values,
|
|
|
|
attention_mask,
|
|
|
|
encoder_hidden_states,
|
|
|
|
encoder_attention_mask,
|
|
|
|
)
|
|
|
|
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
|
|
if use_cache:
|
|
|
|
logger.warning_once(
|
|
|
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
|
|
|
)
|
|
|
|
use_cache = False
|
|
|
|
|
|
|
|
presents = () if use_cache else None
|
|
|
|
all_self_attentions = () if output_attentions else None
|
|
|
|
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
|
|
|
all_hidden_states = () if output_hidden_states else None
|
|
|
|
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
|
|
|
# Model parallel
|
|
|
|
if self.model_parallel:
|
|
|
|
torch.cuda.set_device(hidden_states.device)
|
|
|
|
# Ensure layer_past is on same device as hidden_states (might not be correct)
|
|
|
|
if layer_past is not None:
|
|
|
|
layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past)
|
|
|
|
# Ensure that attention_mask is always on the same device as hidden_states
|
|
|
|
if torch.is_tensor(attention_mask):
|
|
|
|
attention_mask = attention_mask.to(hidden_states.device)
|
|
|
|
if isinstance(head_mask, torch.Tensor):
|
|
|
|
head_mask = head_mask.to(hidden_states.device)
|
|
|
|
if output_hidden_states:
|
|
|
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
|
|
|
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
|
|
|
|
|
|
def create_custom_forward(module):
|
|
|
|
def custom_forward(*inputs):
|
|
|
|
# None for past_key_value
|
|
|
|
return module(*inputs, use_cache, output_attentions)
|
|
|
|
|
|
|
|
return custom_forward
|
|
|
|
|
|
|
|
outputs = torch.utils.checkpoint.checkpoint(
|
|
|
|
create_custom_forward(block),
|
|
|
|
hidden_states,
|
|
|
|
None,
|
|
|
|
attention_mask,
|
|
|
|
head_mask[i],
|
|
|
|
encoder_hidden_states,
|
|
|
|
encoder_attention_mask,
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
outputs = block(
|
|
|
|
hidden_states,
|
|
|
|
layer_past=layer_past,
|
|
|
|
attention_mask=attention_mask,
|
|
|
|
head_mask=head_mask[i],
|
|
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
|
|
use_cache=use_cache,
|
|
|
|
output_attentions=output_attentions,
|
|
|
|
)
|
|
|
|
|
|
|
|
hidden_states = outputs[0]
|
|
|
|
if use_cache is True:
|
|
|
|
presents = presents + (outputs[1],)
|
|
|
|
|
|
|
|
if output_attentions:
|
|
|
|
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
|
|
|
if self.config.add_cross_attention:
|
|
|
|
all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],)
|
|
|
|
|
|
|
|
# Model Parallel: If it's the last layer for that device, put things on the next device
|
|
|
|
if self.model_parallel:
|
|
|
|
for k, v in self.device_map.items():
|
|
|
|
if i == v[-1] and "cuda:" + str(k) != self.last_device:
|
|
|
|
hidden_states = hidden_states.to("cuda:" + str(k + 1))
|
|
|
|
|
|
|
|
hidden_states = self.ln_f(hidden_states)
|
|
|
|
|
|
|
|
hidden_states = hidden_states.view(output_shape)
|
|
|
|
# Add last hidden state
|
|
|
|
if output_hidden_states:
|
|
|
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
|
|
|
|
|
|
|
if not return_dict:
|
|
|
|
return tuple(
|
|
|
|
v
|
|
|
|
for v in [
|
|
|
|
hidden_states,
|
|
|
|
presents,
|
|
|
|
all_hidden_states,
|
|
|
|
all_self_attentions,
|
|
|
|
all_cross_attentions,
|
|
|
|
]
|
|
|
|
if v is not None
|
|
|
|
)
|
|
|
|
|
|
|
|
return BaseModelOutputWithPastAndCrossAttentions(
|
|
|
|
last_hidden_state=hidden_states,
|
|
|
|
past_key_values=presents,
|
|
|
|
hidden_states=all_hidden_states,
|
|
|
|
attentions=all_self_attentions,
|
|
|
|
cross_attentions=all_cross_attentions,
|
|
|
|
)
|
|
|
|
|
|
|
|
return forward
|
|
|
|
|
|
|
|
|
|
|
|
def gpt2_sequence_parallel_forward_fn(shard_config: ShardConfig):
|
|
|
|
def forward(
|
|
|
|
self,
|
|
|
|
input_ids: Optional[torch.LongTensor] = None,
|
|
|
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
|
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
|
|
token_type_ids: Optional[torch.LongTensor] = None,
|
|
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
|
|
head_mask: Optional[torch.FloatTensor] = None,
|
|
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
|
|
encoder_hidden_states: Optional[torch.Tensor] = None,
|
|
|
|
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
|
|
|
use_cache: Optional[bool] = None,
|
|
|
|
output_attentions: Optional[bool] = None,
|
|
|
|
output_hidden_states: Optional[bool] = None,
|
|
|
|
return_dict: Optional[bool] = None,
|
|
|
|
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
|
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
|
|
output_hidden_states = (
|
|
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
|
|
)
|
|
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
|
|
|
|
if input_ids is not None and inputs_embeds is not None:
|
|
|
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
|
|
|
elif input_ids is not None:
|
|
|
|
input_shape = input_ids.size()
|
|
|
|
input_ids = input_ids.view(-1, input_shape[-1])
|
|
|
|
input_ids.shape[0]
|
|
|
|
elif inputs_embeds is not None:
|
|
|
|
input_shape = inputs_embeds.size()[:-1]
|
|
|
|
inputs_embeds.shape[0]
|
2023-08-18 03:21:53 +00:00
|
|
|
else:
|
2024-03-27 03:19:32 +00:00
|
|
|
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
|
|
|
|
|
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
|
|
|
|
|
|
|
if token_type_ids is not None:
|
|
|
|
token_type_ids = token_type_ids.view(-1, input_shape[-1])
|
|
|
|
if position_ids is not None:
|
|
|
|
position_ids = position_ids.view(-1, input_shape[-1])
|
|
|
|
|
|
|
|
if past_key_values is None:
|
|
|
|
past_length = 0
|
|
|
|
past_key_values = tuple([None] * len(self.h))
|
|
|
|
else:
|
|
|
|
past_length = past_key_values[0][0].size(-2)
|
|
|
|
if position_ids is None:
|
|
|
|
position_ids = torch.arange(
|
|
|
|
past_length,
|
|
|
|
input_shape[-1] + past_length,
|
|
|
|
dtype=torch.long,
|
|
|
|
device=device,
|
|
|
|
)
|
|
|
|
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
|
2023-08-18 03:21:53 +00:00
|
|
|
|
|
|
|
# Prepare head mask if needed
|
|
|
|
# 1.0 in head_mask indicate we keep the head
|
|
|
|
# attention_probs has shape bsz x n_heads x N x N
|
|
|
|
# head_mask has shape n_layer x batch x n_heads x N x N
|
|
|
|
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
|
|
|
|
|
|
|
if inputs_embeds is None:
|
|
|
|
inputs_embeds = self.wte(input_ids)
|
|
|
|
position_embeds = self.wpe(position_ids)
|
|
|
|
hidden_states = inputs_embeds + position_embeds
|
|
|
|
|
|
|
|
if token_type_ids is not None:
|
|
|
|
token_type_embeds = self.wte(token_type_ids)
|
|
|
|
hidden_states = hidden_states + token_type_embeds
|
|
|
|
|
|
|
|
hidden_states = self.drop(hidden_states)
|
|
|
|
|
|
|
|
output_shape = input_shape + (hidden_states.size(-1),)
|
2024-03-27 03:19:32 +00:00
|
|
|
attention_mask, encoder_attention_mask = _get_attention_mask(
|
|
|
|
self,
|
|
|
|
shard_config,
|
|
|
|
hidden_states,
|
|
|
|
past_key_values,
|
|
|
|
attention_mask,
|
|
|
|
encoder_hidden_states,
|
|
|
|
encoder_attention_mask,
|
|
|
|
)
|
2023-08-18 03:21:53 +00:00
|
|
|
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
|
|
if use_cache:
|
2023-09-07 09:38:45 +00:00
|
|
|
logger = logging.get_logger(__name__)
|
2023-08-18 03:21:53 +00:00
|
|
|
logger.warning_once(
|
2023-09-19 06:20:26 +00:00
|
|
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
|
|
|
)
|
2023-08-18 03:21:53 +00:00
|
|
|
use_cache = False
|
|
|
|
|
|
|
|
presents = () if use_cache else None
|
|
|
|
all_self_attentions = () if output_attentions else None
|
|
|
|
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
|
|
|
all_hidden_states = () if output_hidden_states else None
|
|
|
|
|
|
|
|
# split the input tensor along sequence dimension
|
|
|
|
# [batch_size, seq_len, hidden_size] -> [batch_size, seq_len/TP_size, hidden_size]
|
2023-09-19 06:20:26 +00:00
|
|
|
hidden_states = split_forward_gather_backward(
|
2024-03-27 03:19:32 +00:00
|
|
|
hidden_states,
|
|
|
|
dim=1,
|
2024-04-03 09:15:47 +00:00
|
|
|
process_group=shard_config.sequence_parallel_process_group,
|
2023-09-19 06:20:26 +00:00
|
|
|
)
|
2023-08-18 03:21:53 +00:00
|
|
|
|
|
|
|
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
|
|
|
# Model parallel
|
|
|
|
if self.model_parallel:
|
|
|
|
torch.cuda.set_device(hidden_states.device)
|
|
|
|
# Ensure layer_past is on same device as hidden_states (might not be correct)
|
|
|
|
if layer_past is not None:
|
|
|
|
layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past)
|
|
|
|
# Ensure that attention_mask is always on the same device as hidden_states
|
2024-03-27 03:19:32 +00:00
|
|
|
if torch.is_tensor(attention_mask):
|
2023-08-18 03:21:53 +00:00
|
|
|
attention_mask = attention_mask.to(hidden_states.device)
|
|
|
|
if isinstance(head_mask, torch.Tensor):
|
|
|
|
head_mask = head_mask.to(hidden_states.device)
|
|
|
|
if output_hidden_states:
|
|
|
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
|
|
|
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
|
|
|
|
|
|
def create_custom_forward(module):
|
|
|
|
def custom_forward(*inputs):
|
|
|
|
# None for past_key_value
|
|
|
|
return module(*inputs, use_cache, output_attentions)
|
|
|
|
|
|
|
|
return custom_forward
|
|
|
|
|
|
|
|
outputs = torch.utils.checkpoint.checkpoint(
|
|
|
|
create_custom_forward(block),
|
|
|
|
hidden_states,
|
|
|
|
None,
|
|
|
|
attention_mask,
|
|
|
|
head_mask[i],
|
|
|
|
encoder_hidden_states,
|
|
|
|
encoder_attention_mask,
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
outputs = block(
|
|
|
|
hidden_states,
|
|
|
|
layer_past=layer_past,
|
|
|
|
attention_mask=attention_mask,
|
|
|
|
head_mask=head_mask[i],
|
|
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
|
|
use_cache=use_cache,
|
|
|
|
output_attentions=output_attentions,
|
|
|
|
)
|
|
|
|
|
|
|
|
hidden_states = outputs[0]
|
|
|
|
if use_cache is True:
|
|
|
|
presents = presents + (outputs[1],)
|
|
|
|
|
|
|
|
if output_attentions:
|
|
|
|
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
|
|
|
if self.config.add_cross_attention:
|
|
|
|
all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],)
|
|
|
|
|
|
|
|
# Model Parallel: If it's the last layer for that device, put things on the next device
|
|
|
|
if self.model_parallel:
|
|
|
|
for k, v in self.device_map.items():
|
|
|
|
if i == v[-1] and "cuda:" + str(k) != self.last_device:
|
|
|
|
hidden_states = hidden_states.to("cuda:" + str(k + 1))
|
|
|
|
|
|
|
|
# When sequence parallelism done, gather the output tensor in forward and split it in backward
|
2023-09-19 06:20:26 +00:00
|
|
|
hidden_states = gather_forward_split_backward(
|
2024-03-27 03:19:32 +00:00
|
|
|
hidden_states,
|
|
|
|
dim=1,
|
2024-04-03 09:15:47 +00:00
|
|
|
process_group=shard_config.sequence_parallel_process_group,
|
2023-09-19 06:20:26 +00:00
|
|
|
)
|
2023-08-18 03:21:53 +00:00
|
|
|
|
|
|
|
hidden_states = self.ln_f(hidden_states)
|
|
|
|
hidden_states = hidden_states.view(output_shape)
|
|
|
|
# Add last hidden state
|
|
|
|
if output_hidden_states:
|
|
|
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
|
|
|
|
|
|
|
if not return_dict:
|
|
|
|
return tuple(
|
2023-09-19 06:20:26 +00:00
|
|
|
v
|
2024-03-27 03:19:32 +00:00
|
|
|
for v in [
|
|
|
|
hidden_states,
|
|
|
|
presents,
|
|
|
|
all_hidden_states,
|
|
|
|
all_self_attentions,
|
|
|
|
all_cross_attentions,
|
|
|
|
]
|
2023-09-19 06:20:26 +00:00
|
|
|
if v is not None
|
|
|
|
)
|
2023-08-18 03:21:53 +00:00
|
|
|
|
|
|
|
return BaseModelOutputWithPastAndCrossAttentions(
|
|
|
|
last_hidden_state=hidden_states,
|
|
|
|
past_key_values=presents,
|
|
|
|
hidden_states=all_hidden_states,
|
|
|
|
attentions=all_self_attentions,
|
|
|
|
cross_attentions=all_cross_attentions,
|
|
|
|
)
|
|
|
|
|
|
|
|
return forward
|
2024-03-04 08:18:13 +00:00
|
|
|
|
|
|
|
|
|
|
|
def get_lm_forward_with_dist_cross_entropy(shard_config: ShardConfig):
|
|
|
|
from transformers import GPT2LMHeadModel
|
|
|
|
|
|
|
|
def forward(
|
|
|
|
self: GPT2LMHeadModel,
|
|
|
|
input_ids: Optional[torch.LongTensor] = None,
|
|
|
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
|
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
|
|
token_type_ids: Optional[torch.LongTensor] = None,
|
|
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
|
|
head_mask: Optional[torch.FloatTensor] = None,
|
|
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
|
|
encoder_hidden_states: Optional[torch.Tensor] = None,
|
|
|
|
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
|
|
|
labels: Optional[torch.LongTensor] = None,
|
|
|
|
use_cache: Optional[bool] = None,
|
|
|
|
output_attentions: Optional[bool] = None,
|
|
|
|
output_hidden_states: Optional[bool] = None,
|
|
|
|
return_dict: Optional[bool] = None,
|
|
|
|
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
|
|
|
|
r"""
|
|
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
|
|
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
|
|
|
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
|
|
|
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
|
|
|
"""
|
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
|
|
|
|
transformer_outputs = self.transformer(
|
|
|
|
input_ids,
|
|
|
|
past_key_values=past_key_values,
|
|
|
|
attention_mask=attention_mask,
|
|
|
|
token_type_ids=token_type_ids,
|
|
|
|
position_ids=position_ids,
|
|
|
|
head_mask=head_mask,
|
|
|
|
inputs_embeds=inputs_embeds,
|
|
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
|
|
use_cache=use_cache,
|
|
|
|
output_attentions=output_attentions,
|
|
|
|
output_hidden_states=output_hidden_states,
|
|
|
|
return_dict=return_dict,
|
|
|
|
)
|
|
|
|
hidden_states = transformer_outputs[0]
|
|
|
|
|
|
|
|
lm_logits = self.lm_head(hidden_states)
|
|
|
|
|
|
|
|
loss = None
|
|
|
|
if labels is not None:
|
|
|
|
# move labels to correct device to enable model parallelism
|
|
|
|
labels = labels.to(lm_logits.device)
|
|
|
|
# Shift so that tokens < n predict n
|
|
|
|
shift_logits = lm_logits[..., :-1, :].contiguous()
|
|
|
|
shift_labels = labels[..., 1:].contiguous()
|
|
|
|
# Flatten the tokens
|
|
|
|
shift_logits = shift_logits.view(-1, shift_logits.size(-1))
|
|
|
|
shift_labels = shift_labels.view(-1)
|
2024-03-25 09:21:51 +00:00
|
|
|
loss = cross_entropy_1d(
|
[shardformer] refactor embedding resize (#5603)
* [branch rebase] rebase main to Feature/resize_embedding (#5554)
* fix
* [release] update version (#5411)
* [hotfix] fix typo s/keywrods/keywords etc. (#5429)
* [devops] fix compatibility (#5444)
* [devops] fix compatibility
* [hotfix] update compatibility test on pr
* [devops] fix compatibility
* [devops] record duration during comp test
* [test] decrease test duration
* fix falcon
* [shardformer] fix gathering output when using tensor parallelism (#5431)
* fix
* padding vocab_size when using pipeline parallellism
padding vocab_size when using pipeline parallellism
fix
fix
* fix
* fix
fix
fix
* fix gather output
* fix
* fix
* fix
fix resize embedding
fix resize embedding
* fix resize embedding
fix
* revert
* revert
* revert
* [doc] release Open-Sora 1.0 with model weights (#5468)
* [doc] release Open-Sora 1.0 with model weights
* [doc] release Open-Sora 1.0 with model weights
* [doc] release Open-Sora 1.0 with model weights
* [doc] update open-sora demo (#5479)
* [doc] update open-sora demo
* [doc] update open-sora demo
* [doc] update open-sora demo
* [example] add grok-1 inference (#5485)
* [misc] add submodule
* remove submodule
* [example] support grok-1 tp inference
* [example] add grok-1 inference script
* [example] refactor code
* [example] add grok-1 readme
* [exmaple] add test ci
* [exmaple] update readme
---------
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: digger yu <digger-yu@outlook.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
* [CI] run pre-commit (#5577)
* fix
* [release] update version (#5411)
* [hotfix] fix typo s/keywrods/keywords etc. (#5429)
* [devops] fix compatibility (#5444)
* [devops] fix compatibility
* [hotfix] update compatibility test on pr
* [devops] fix compatibility
* [devops] record duration during comp test
* [test] decrease test duration
* fix falcon
* [shardformer] fix gathering output when using tensor parallelism (#5431)
* fix
* padding vocab_size when using pipeline parallellism
padding vocab_size when using pipeline parallellism
fix
fix
* fix
* fix
fix
fix
* fix gather output
* fix
* fix
* fix
fix resize embedding
fix resize embedding
* fix resize embedding
fix
* revert
* revert
* revert
* [doc] release Open-Sora 1.0 with model weights (#5468)
* [doc] release Open-Sora 1.0 with model weights
* [doc] release Open-Sora 1.0 with model weights
* [doc] release Open-Sora 1.0 with model weights
* [doc] update open-sora demo (#5479)
* [doc] update open-sora demo
* [doc] update open-sora demo
* [doc] update open-sora demo
* [example] add grok-1 inference (#5485)
* [misc] add submodule
* remove submodule
* [example] support grok-1 tp inference
* [example] add grok-1 inference script
* [example] refactor code
* [example] add grok-1 readme
* [exmaple] add test ci
* [exmaple] update readme
* run pre-commit
---------
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: digger yu <digger-yu@outlook.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
* [rebase] rebase main to resize-embedding (#5581)
* [release] grok-1 314b inference (#5490)
* [release] grok-1 inference
* [release] grok-1 inference
* [release] grok-1 inference
* [example] update Grok-1 inference (#5495)
* revise grok-1 example
* remove unused arg in scripts
* prevent re-installing torch
* update readme
* revert modifying colossalai requirements
* add perf
* trivial
* add tokenizer url
* [hotfix] set return_outputs=False in examples and polish code (#5404)
* fix: simplify merge_batch
* fix: use return_outputs=False to eliminate extra memory consumption
* feat: add return_outputs warning
* style: remove `return_outputs=False` as it is the default value
* [release] grok-1 inference benchmark (#5500)
* [release] grok-1 inference benchmark
* [release] grok-1 inference benchmark
* [release] grok-1 inference benchmark
* [release] grok-1 inference benchmark
* [release] grok-1 inference benchmark
* [shardformer]Fix lm parallel. (#5480)
* fix
* padding vocab_size when using pipeline parallellism
padding vocab_size when using pipeline parallellism
fix
fix
* fix
* fix
fix
fix
* fix gather output
* fix
* fix
* fix
fix resize embedding
fix resize embedding
* fix resize embedding
fix
* revert
* revert
* revert
* fix lm forward distribution
* fix
* test ci
* fix
* [fix] fix grok-1 example typo (#5506)
* [devops] fix example test ci (#5504)
* Fix ColoTensorSpec for py11 (#5440)
* fixed layout converter caching and updated tester
* Empty-Commit
* [shardformer] update colo attention to support custom mask (#5510)
* [feature] refactor colo attention (#5462)
* [extension] update api
* [feature] add colo attention
* [feature] update sdpa
* [feature] update npu attention
* [feature] update flash-attn
* [test] add flash attn test
* [test] update flash attn test
* [shardformer] update modeling to fit colo attention (#5465)
* [misc] refactor folder structure
* [shardformer] update llama flash-attn
* [shardformer] fix llama policy
* [devops] update tensornvme install
* [test] update llama test
* [shardformer] update colo attn kernel dispatch
* [shardformer] update blip2
* [shardformer] update chatglm
* [shardformer] update gpt2
* [shardformer] update gptj
* [shardformer] update opt
* [shardformer] update vit
* [shardformer] update colo attention mask prep
* [shardformer] update whisper
* [test] fix shardformer tests (#5514)
* [test] fix shardformer tests
* [test] fix shardformer tests
* [format] applied code formatting on changed files in pull request 5510 (#5517)
Co-authored-by: github-actions <github-actions@github.com>
* [shardformer] fix pipeline forward error if custom layer distribution is used (#5189)
* Use self.[distribute_layers|get_stage_index] to exploit custom layer distribution
* Change static methods for t5 layer distribution to member functions
* Change static methods for whisper layer distribution to member functions
* Replace whisper policy usage with self one
* Fix test case to use non-static layer distribution methods
* fix: fix typo
---------
Co-authored-by: Wenhao Chen <cwher@outlook.com>
* [Fix] Grok-1 use tokenizer from the same pretrained path (#5532)
* [fix] use tokenizer from the same pretrained path
* trust remote code
* [ColossalChat] Update RLHF V2 (#5286)
* Add dpo. Fix sft, ppo, lora. Refactor all
* fix and tested ppo
* 2 nd round refactor
* add ci tests
* fix ci
* fix ci
* fix readme, style
* fix readme style
* fix style, fix benchmark
* reproduce benchmark result, remove useless files
* rename to ColossalChat
* use new image
* fix ci workflow
* fix ci
* use local model/tokenizer for ci tests
* fix ci
* fix ci
* fix ci
* fix ci timeout
* fix rm progress bar. fix ci timeout
* fix ci
* fix ci typo
* remove 3d plugin from ci temporary
* test environment
* cannot save optimizer
* support chat template
* fix readme
* fix path
* test ci locally
* restore build_or_pr
* fix ci data path
* fix benchmark
* fix ci, move ci tests to 3080, disable fast tokenizer
* move ci to 85
* support flash attention 2
* add all-in-one data preparation script. Fix colossal-llama2-chat chat template
* add hardware requirements
* move ci test data
* fix save_model, add unwrap
* fix missing bos
* fix missing bos; support grad accumulation with gemini
* fix ci
* fix ci
* fix ci
* fix llama2 chat template config
* debug sft
* debug sft
* fix colossalai version requirement
* fix ci
* add sanity check to prevent NaN loss
* fix requirements
* add dummy data generation script
* add dummy data generation script
* add dummy data generation script
* add dummy data generation script
* update readme
* update readme
* update readme and ignore
* fix logger bug
* support parallel_output
* modify data preparation logic
* fix tokenization
* update lr
* fix inference
* run pre-commit
---------
Co-authored-by: Tong Li <tong.li352711588@gmail.com>
* [shardformer, pipeline] add `gradient_checkpointing_ratio` and heterogenous shard policy for llama (#5508)
* feat: add `GradientCheckpointConfig` and `PipelineGradientCheckpointConfig`
* feat: apply `GradientCheckpointConfig` to policy and llama_forward
* feat: move `distribute_layer` and `get_stage_index` to PipelineStageManager
* fix: add optional args for `distribute_layer` and `get_stage_index`
* fix: fix changed API calls
* test: update llama tests
* style: polish `GradientCheckpointConfig`
* fix: fix pipeline utils tests
* fix incorrect sharding without zero (#5545)
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [shardformer] Sequence Parallelism Optimization (#5533)
* sequence parallel optimization
* validate sequence parallel in llama (code to be polished)
* shardformer api writing
* integrate sequence parallel in ShardFormer
* fix pp bugs and sp bugs for LlaMa model
* integrating ring-based sequence parallelism into ShardFormer
* [sequence parallelism]: Add fused megatron function
* integrating ring-based sequence parallelism into ShardFormer
---------
Co-authored-by: linsj20 <linsj20@mails.tsinghua.edu.cn>
* fix bugs when useing sp and flashattention together
* fix operation function name
* support flash attention for ulysses-style sp
* clarify sp process group
* fix compatibility bugs in moe plugin
* fix fused linear bugs
* fix linear layer test
* support gpt model all-to-all sp
* modify shard data dimension (meant to be dim=-1)
* support megtron-style sp and distributed attn for llama model
* [shardformer] add megatron sp to llama
* support llama7B 128k with distributed attention
* [shardformer] robustness enhancement
* add block attn
* sp mode 1: keep input as a complete sequence
* fix sp compatability
* finish sp mode 3 support for gpt
* using all_to_all_single when batch size is 1
* support mode 2 sp in gpt2 (#5)
* [shardformer] add megatron sp to llama
* support llama7B 128k with distributed attention
* [shardformer] robustness enhancement
* add block attn
* sp mode 1: keep input as a complete sequence
* fix sp compatability
* refactor ring implementation
* support mode 2 sp in gpt2
* polish code
* enable distributed attn mask when using sp mode 2 and 3 in llama
* automatically enable flash attn when using sp mode 2 and 3 in llama
* inplace attn mask
* add zero2 support for sequence parallel
* polish code
* fix bugs
* fix gemini checkpoint io
* loose tensor checking atol and rtol
* add comment
* fix llama layernorm grad
* fix zero grad
* fix zero grad
* fix conflict
* update split and gather auto grad func
* sequence parallel: inside text split (#6)
* polish code (part 1)
* polish code (part 2)
* polish code (part 2.5)
* polish code (part 3)
* sequence parallel: inside text split
* miscellaneous minor fixes
* polish code
* fix ulysses style ZeRO
* sequence parallel: inside text split
* miscellaneous minor fixes
* disaggregate sp group and dp group for sp
* fix llama and gpt sp
* polish code
* move ulysses grad sync to ddp (#9)
* remove zero_stage and unbind the grad sync for alltoall sp
* add 2d group creation test
* move ulysses grad sync to ddp
* add 2d group creation test
* remove useless code
* change shard config not to enable sp when enable_all_optimizations
* add sp warnings for several model
* remove useless code
---------
Co-authored-by: linsj20 <linsj20@mails.tsinghua.edu.cn>
* [hotfix] quick fixes to make legacy tutorials runnable (#5559)
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [fix] fix typo s/muiti-node /multi-node etc. (#5448)
* [hotfix] fix typo s/get_defualt_parser /get_default_parser (#5548)
* [devops] remove post commit ci (#5566)
* [devops] remove post commit ci
* [misc] run pre-commit on all files
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
---------
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
Co-authored-by: Yuanheng Zhao <54058983+yuanheng-zhao@users.noreply.github.com>
Co-authored-by: Wenhao Chen <cwher@outlook.com>
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: Rocky Duan <dementrock@users.noreply.github.com>
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: github-actions <github-actions@github.com>
Co-authored-by: Insu Jang <insujang@umich.edu>
Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com>
Co-authored-by: Tong Li <tong.li352711588@gmail.com>
Co-authored-by: Zhongkai Zhao <kanezz620@gmail.com>
Co-authored-by: linsj20 <linsj20@mails.tsinghua.edu.cn>
Co-authored-by: digger yu <digger-yu@outlook.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [shardformer]enable padding vocabulary size. (#5489)
* padding vocab_size when using pipeline parallellism
padding vocab_size when using pipeline parallellism
fix
fix
* fix
* fix
fix
fix
* fix gather output
* fix
* fix
* fix
fix resize embedding
fix resize embedding
* fix resize embedding
fix
* revert
* revert
* revert
* padding vocab
* padding vocabe
* fix
* fix
* fxi
* test ci
* fix
fix
fix
fix
* fix
fix
* fix
* fix
* Update hybrid_parallel_plugin.py
fix
fix
fix
* fix
fix
* fix
fix
* fix
* resolve super init
resolve super init
resolve super init
resolve super init
* resolve comments
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* vocab checkpointio
* padding vocab_size when using pipeline parallellism
padding vocab_size when using pipeline parallellism
fix
fix
* fix
fix
fix
* fix
* fix
fix resize embedding
fix resize embedding
* fix resize embedding
fix
* revert
* revert
* padding vocab
* fix
* fix
fix
* fix
fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix ci
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
* cherry-pick
* revert moe modify
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
fix
fix
fix
fix
fix
fix
fix
* resolve comments
resolve comments
resolve comments
resolve comments
resolve comments
* ptensor
ptensor
resolve comments
fix
fix
fix
fix
fix
resolve comments
resolve comments
resolve comments
resolve comments
resolve comments
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix rebase
* fix rebase
---------
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: digger yu <digger-yu@outlook.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
Co-authored-by: Yuanheng Zhao <54058983+yuanheng-zhao@users.noreply.github.com>
Co-authored-by: Wenhao Chen <cwher@outlook.com>
Co-authored-by: Rocky Duan <dementrock@users.noreply.github.com>
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: github-actions <github-actions@github.com>
Co-authored-by: Insu Jang <insujang@umich.edu>
Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com>
Co-authored-by: Tong Li <tong.li352711588@gmail.com>
Co-authored-by: Zhongkai Zhao <kanezz620@gmail.com>
Co-authored-by: linsj20 <linsj20@mails.tsinghua.edu.cn>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2024-04-18 08:10:18 +00:00
|
|
|
shift_logits,
|
|
|
|
shift_labels,
|
|
|
|
process_group=shard_config.tensor_parallel_process_group,
|
|
|
|
vocab_size=self.lm_head.out_features,
|
2024-03-25 09:21:51 +00:00
|
|
|
)
|
|
|
|
|
2024-03-04 08:18:13 +00:00
|
|
|
if not return_dict:
|
|
|
|
output = (lm_logits,) + transformer_outputs[1:]
|
|
|
|
return ((loss,) + output) if loss is not None else output
|
|
|
|
|
|
|
|
return CausalLMOutputWithCrossAttentions(
|
|
|
|
loss=loss,
|
|
|
|
logits=lm_logits,
|
|
|
|
past_key_values=transformer_outputs.past_key_values,
|
|
|
|
hidden_states=transformer_outputs.hidden_states,
|
|
|
|
attentions=transformer_outputs.attentions,
|
|
|
|
cross_attentions=transformer_outputs.cross_attentions,
|
|
|
|
)
|
|
|
|
|
|
|
|
return forward
|
2024-04-29 07:33:51 +00:00
|
|
|
|
|
|
|
|
|
|
|
def get_jit_fused_gpt2_mlp_forward():
|
|
|
|
from transformers.models.gpt2.modeling_gpt2 import GPT2MLP
|
|
|
|
|
|
|
|
from colossalai.kernel.jit.bias_gelu import GeLUFunction as JitGeLUFunction
|
|
|
|
|
|
|
|
def forward(self: GPT2MLP, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor:
|
|
|
|
hidden_states, bias = self.c_fc(hidden_states)
|
|
|
|
hidden_states = JitGeLUFunction.apply(hidden_states, bias)
|
|
|
|
hidden_states = self.c_proj(hidden_states)
|
|
|
|
hidden_states = self.dropout(hidden_states)
|
|
|
|
return hidden_states
|
|
|
|
|
|
|
|
return forward
|