mirror of https://github.com/hpcaitech/ColossalAI
43 lines
1.4 KiB
Python
43 lines
1.4 KiB
Python
|
import torch
|
||
|
from timm.models.beit import Beit
|
||
|
|
||
|
from colossalai.utils.cuda import get_current_device
|
||
|
|
||
|
from .registry import non_distributed_component_funcs
|
||
|
from .utils.dummy_data_generator import DummyDataGenerator
|
||
|
|
||
|
|
||
|
class DummyDataLoader(DummyDataGenerator):
|
||
|
img_size = 64
|
||
|
num_channel = 3
|
||
|
num_class = 10
|
||
|
batch_size = 4
|
||
|
|
||
|
def generate(self):
|
||
|
data = torch.randn((DummyDataLoader.batch_size, DummyDataLoader.num_channel, DummyDataLoader.img_size,
|
||
|
DummyDataLoader.img_size),
|
||
|
device=get_current_device())
|
||
|
label = torch.randint(low=0,
|
||
|
high=DummyDataLoader.num_class,
|
||
|
size=(DummyDataLoader.batch_size,),
|
||
|
device=get_current_device())
|
||
|
return data, label
|
||
|
|
||
|
|
||
|
@non_distributed_component_funcs.register(name='beit')
|
||
|
def get_training_components():
|
||
|
|
||
|
def model_buider(checkpoint=False):
|
||
|
model = Beit(img_size=DummyDataLoader.img_size,
|
||
|
num_classes=DummyDataLoader.num_class,
|
||
|
embed_dim=32,
|
||
|
depth=2,
|
||
|
num_heads=4)
|
||
|
return model
|
||
|
|
||
|
trainloader = DummyDataLoader()
|
||
|
testloader = DummyDataLoader()
|
||
|
|
||
|
criterion = torch.nn.CrossEntropyLoss()
|
||
|
return model_buider, trainloader, testloader, torch.optim.Adam, criterion
|