ColossalAI/tests/test_shardformer/test_module/test_dropout.py

52 lines
1.9 KiB
Python
Raw Normal View History

import pytest
import torch
import torch.nn.functional as F
import colossalai
from colossalai.logging import disable_existing_loggers
from colossalai.shardformer.layer.dropout import Dropout1D
from colossalai.testing import rerun_if_address_is_in_use, spawn
CONFIG = dict(parallel=dict(data=1, pipeline=1, tensor=dict(size=2, mode='1d')),)
def check_dropout(rank, world_size, port):
disable_existing_loggers()
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, port=port, host='localhost', backend='nccl')
# prepare data
input = torch.randn(5, 4).to('cuda')
dropout = Dropout1D(p=0.4).to('cuda')
output_list = []
# compare the dropout pattern in each device
for i in range(2):
output = dropout(input)
output_list.append(output)
dist_output_list = [torch.zeros(*output.shape).to('cuda') for _ in range(world_size)]
torch.distributed.all_gather(dist_output_list, output)
for j in range(world_size):
for k in range(world_size):
if j != k:
mask = torch.eq(dist_output_list[j], 0.0) == torch.eq(dist_output_list[k], 0.0)
assert torch.all(
mask
) == False, f"The dropout pattern in each device is not unique\n{dist_output_list[j]}\n{dist_output_list[k]}"
# compare the dropout pattern in loacl device
for i in range(len(output_list)):
for j in range(len(output_list)):
if i != j:
mask = torch.eq(output_list[i], 0.0) == torch.eq(output_list[j], 0.0)
assert torch.all(
mask
) == False, f"The dropout pattern in one device is not unique\n{output_list[i]}\n{output_list[j]}"
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_dropout():
spawn(check_dropout, 2)
if __name__ == '__main__':
test_dropout()