|
|
|
import os
|
|
|
|
import warnings
|
|
|
|
from pathlib import Path
|
|
|
|
from typing import Any, Dict, Optional, Union
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
from torch.nn.modules.module import _addindent
|
|
|
|
|
|
|
|
try:
|
|
|
|
from torch.fx.graph import Graph, PythonCode, _PyTreeCodeGen
|
|
|
|
from torch.fx.graph_module import GraphModule, _exec_with_source, _forward_from_src, _WrappedCall
|
|
|
|
|
|
|
|
from colossalai.fx.codegen.activation_checkpoint_codegen import ActivationCheckpointCodeGen
|
|
|
|
|
|
|
|
COLOGM = True
|
|
|
|
except:
|
|
|
|
from torch.fx.graph import Graph
|
|
|
|
from torch.fx.graph_module import GraphModule
|
|
|
|
|
|
|
|
COLOGM = False
|
|
|
|
|
|
|
|
if COLOGM:
|
|
|
|
|
|
|
|
class ColoGraphModule(GraphModule):
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
root: Union[torch.nn.Module, Dict[str, Any]],
|
|
|
|
graph: Graph,
|
|
|
|
class_name: str = "GraphModule",
|
|
|
|
ckpt_codegen: bool = True,
|
|
|
|
):
|
|
|
|
if ckpt_codegen:
|
|
|
|
graph.set_codegen(ActivationCheckpointCodeGen())
|
|
|
|
super().__init__(root, graph, class_name)
|
|
|
|
|
|
|
|
def bind(self, ckpt_def, globals):
|
|
|
|
"""Bind function needed for correctly execute gm forward
|
|
|
|
|
|
|
|
We need to bind checkpoint functions and saved_tensor_hooks functions
|
|
|
|
to gm so that we could correctly execute gm forward
|
|
|
|
|
|
|
|
Args:
|
|
|
|
ckpt_def (_type_): definition before the forward function
|
|
|
|
globals (_type_): global variables
|
|
|
|
"""
|
|
|
|
|
|
|
|
ckpt_code = "\n".join(ckpt_def)
|
|
|
|
globals_copy = globals.copy()
|
|
|
|
_exec_with_source(ckpt_code, globals_copy)
|
|
|
|
func_list = [func for func in globals_copy.keys() if "checkpoint" in func or "pack" in func]
|
|
|
|
for func in func_list:
|
|
|
|
tmp_func = globals_copy[func]
|
|
|
|
setattr(self, func, tmp_func.__get__(self, self.__class__))
|
|
|
|
del globals_copy[func]
|
|
|
|
|
|
|
|
def recompile(self) -> PythonCode:
|
|
|
|
"""
|
|
|
|
Recompile this GraphModule from its ``graph`` attribute. This should be
|
|
|
|
called after editing the contained ``graph``, otherwise the generated
|
|
|
|
code of this ``GraphModule`` will be out of date.
|
|
|
|
"""
|
|
|
|
if isinstance(self._graph._codegen, _PyTreeCodeGen):
|
|
|
|
self._in_spec = self._graph._codegen.pytree_info.in_spec
|
|
|
|
self._out_spec = self._graph._codegen.pytree_info.out_spec
|
|
|
|
python_code = self._graph.python_code(root_module="self")
|
|
|
|
self._code = python_code.src
|
|
|
|
|
|
|
|
# To split ckpt functions code and forward code
|
|
|
|
_code_list = self._code.split("\n")
|
|
|
|
_fwd_def = [item for item in _code_list if "def forward" in item][0]
|
|
|
|
_fwd_idx = _code_list.index(_fwd_def)
|
|
|
|
ckpt_def = _code_list[:_fwd_idx]
|
|
|
|
self._code = "\n".join(_code_list[_fwd_idx:])
|
|
|
|
|
|
|
|
self.bind(ckpt_def, python_code.globals)
|
|
|
|
|
|
|
|
cls = type(self)
|
|
|
|
cls.forward = _forward_from_src(self._code, python_code.globals)
|
|
|
|
|
|
|
|
# Determine whether this class explicitly defines a __call__ implementation
|
|
|
|
# to wrap. If it does, save it in order to have wrapped_call invoke it.
|
|
|
|
# If it does not, wrapped_call can use a dynamic call to super() instead.
|
|
|
|
# In most cases, super().__call__ should be torch.nn.Module.__call__.
|
|
|
|
# We do not want to hold a reference to Module.__call__ here; doing so will
|
|
|
|
# bypass patching of torch.nn.Module.__call__ done while symbolic tracing.
|
|
|
|
cls_call = cls.__call__ if "__call__" in vars(cls) else None
|
|
|
|
|
|
|
|
if "_wrapped_call" not in vars(cls):
|
|
|
|
cls._wrapped_call = _WrappedCall(cls, cls_call) # type: ignore[attr-defined]
|
|
|
|
|
|
|
|
def call_wrapped(self, *args, **kwargs):
|
|
|
|
return self._wrapped_call(self, *args, **kwargs)
|
|
|
|
|
|
|
|
cls.__call__ = call_wrapped
|
|
|
|
|
|
|
|
# reset self._code to original src, otherwise to_folder will be wrong
|
|
|
|
self._code = python_code.src
|
|
|
|
return python_code
|
|
|
|
|
|
|
|
def to_folder(self, folder: Union[str, os.PathLike], module_name: str = "FxModule"):
|
|
|
|
"""Dumps out module to ``folder`` with ``module_name`` so that it can be
|
|
|
|
imported with ``from <folder> import <module_name>``
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
|
|
|
folder (Union[str, os.PathLike]): The folder to write the code out to
|
|
|
|
|
|
|
|
module_name (str): Top-level name to use for the ``Module`` while
|
|
|
|
writing out the code
|
|
|
|
"""
|
|
|
|
folder = Path(folder)
|
|
|
|
Path(folder).mkdir(exist_ok=True)
|
|
|
|
torch.save(self.state_dict(), folder / "state_dict.pt")
|
|
|
|
tab = " " * 4
|
|
|
|
|
|
|
|
# we add import colossalai here
|
|
|
|
model_str = f"""
|
|
|
|
import torch
|
|
|
|
from torch.nn import *
|
|
|
|
import colossalai
|
|
|
|
|
|
|
|
|
|
|
|
class {module_name}(torch.nn.Module):
|
|
|
|
def __init__(self):
|
|
|
|
super().__init__()
|
|
|
|
"""
|
|
|
|
|
|
|
|
def _gen_model_repr(module_name: str, module: torch.nn.Module) -> Optional[str]:
|
|
|
|
safe_reprs = [
|
|
|
|
nn.Linear,
|
|
|
|
nn.Conv1d,
|
|
|
|
nn.Conv2d,
|
|
|
|
nn.Conv3d,
|
|
|
|
nn.BatchNorm1d,
|
|
|
|
nn.BatchNorm2d,
|
|
|
|
nn.BatchNorm3d,
|
|
|
|
]
|
|
|
|
if type(module) in safe_reprs:
|
|
|
|
return f"{module.__repr__()}"
|
|
|
|
else:
|
|
|
|
return None
|
|
|
|
|
|
|
|
blobified_modules = []
|
|
|
|
for module_name, module in self.named_children():
|
|
|
|
module_str = _gen_model_repr(module_name, module)
|
|
|
|
if module_str is None:
|
|
|
|
module_file = folder / f"{module_name}.pt"
|
|
|
|
torch.save(module, module_file)
|
|
|
|
blobified_modules.append(module_name)
|
|
|
|
module_repr = module.__repr__().replace("\r", " ").replace("\n", " ")
|
|
|
|
module_str = f"torch.load(r'{module_file}') # {module_repr}"
|
|
|
|
model_str += f"{tab*2}self.{module_name} = {module_str}\n"
|
|
|
|
|
|
|
|
for buffer_name, buffer in self._buffers.items():
|
|
|
|
if buffer is None:
|
|
|
|
continue
|
|
|
|
model_str += f"{tab*2}self.register_buffer('{buffer_name}', torch.empty({list(buffer.shape)}, dtype={buffer.dtype}))\n"
|
|
|
|
|
|
|
|
for param_name, param in self._parameters.items():
|
|
|
|
if param is None:
|
|
|
|
continue
|
|
|
|
model_str += f"{tab*2}self.{param_name} = torch.nn.Parameter(torch.empty({list(param.shape)}, dtype={param.dtype}))\n"
|
|
|
|
|
|
|
|
model_str += f"{tab*2}self.load_state_dict(torch.load(r'{folder}/state_dict.pt'))\n"
|
|
|
|
model_str += f"{_addindent(self.code, 4)}\n"
|
|
|
|
|
|
|
|
module_file = folder / "module.py"
|
|
|
|
module_file.write_text(model_str)
|
|
|
|
|
|
|
|
init_file = folder / "__init__.py"
|
|
|
|
init_file.write_text("from .module import *")
|
|
|
|
|
|
|
|
if len(blobified_modules) > 0:
|
|
|
|
warnings.warn(
|
|
|
|
"Was not able to save the following children modules as reprs -"
|
|
|
|
f"saved as pickled files instead: {blobified_modules}"
|
|
|
|
)
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
class ColoGraphModule(GraphModule):
|
|
|
|
def __init__(self, root: Union[torch.nn.Module, Dict[str, Any]], graph: Graph, class_name: str = "GraphModule"):
|
|
|
|
super().__init__(root, graph, class_name)
|