ColossalAI/tests/test_autochunk/test_autochunk_diffuser/benchmark_autochunk_diffuse...

148 lines
4.8 KiB
Python
Raw Normal View History

import time
from typing import Any, Dict, List
import torch
import torch.fx
import colossalai
from colossalai.autochunk.autochunk_codegen import AUTOCHUNK_AVAILABLE
from colossalai.fx.graph_module import ColoGraphModule
from colossalai.fx.passes.meta_info_prop import MetaInfoProp
from colossalai.fx.profiler import parameter_size
from colossalai.utils import free_port
if AUTOCHUNK_AVAILABLE:
from colossalai.autochunk.autochunk_codegen import AutoChunkCodeGen
from colossalai.fx.profiler import MetaTensor
from colossalai.fx.tracer.experimental import ColoTracer, symbolic_trace
def _benchmark_autochunk_unet_gm(
model: Any,
data: tuple,
max_memory: int = None,
) -> None:
model = model.cuda().eval()
# build model and input
meta_args, concrete_args = data
if concrete_args is None:
concrete_args = {}
# trace the meta graph and setup codegen
meta_graph = symbolic_trace(
model,
meta_args={k: v.to(torch.device("meta")) for k, v in meta_args},
concrete_args={k: v for k, v in concrete_args},
)
interp = MetaInfoProp(meta_graph)
meta_tensors = [i[1] for i in meta_args] + [i[1] for i in concrete_args]
meta_tensors = [MetaTensor(i, fake_device="cpu") if isinstance(i, torch.Tensor) else i for i in meta_tensors]
interp.propagate(*meta_tensors)
codegen = AutoChunkCodeGen(
meta_graph,
max_memory=max_memory,
)
# trace and recompile
# MetaInfoProp requires symbolic_trace but CodeGen requires ColoTracer
graph = ColoTracer().trace(
model.cuda().eval(),
meta_args={k: v.to(torch.device("meta")) for k, v in meta_args},
concrete_args={k: v for k, v in concrete_args},
)
graph.set_codegen(codegen)
gm = ColoGraphModule(model, graph, ckpt_codegen=False)
gm.recompile()
# init inputs
inputs = [i[1] for i in meta_args] + [i[1] for i in concrete_args]
inputs = [i.cuda() if isinstance(i, torch.Tensor) else i for i in inputs]
model.cuda().eval()
# bench
para_mem = float(parameter_size(model)) / 1024**2
act_mem = _benchmark_memory(gm, inputs)
speed = _benchmark_speed(gm, inputs)
print("unet autochunk, time: %.4fs, act mem: %.2fMB, para mem: %.2fMB, all mem: %.2fMB" %
(speed, act_mem, para_mem, act_mem + para_mem))
def _benchmark_autochunk_unet_origin(
model: Any,
data: tuple,
) -> None:
# build model and input
meta_args, concrete_args = data
if concrete_args is None:
concrete_args = {}
# init inputs
inputs = [i[1] for i in meta_args] + [i[1] for i in concrete_args]
inputs = [i.cuda() if isinstance(i, torch.Tensor) else i for i in inputs]
model.cuda().eval()
# bench
para_mem = float(parameter_size(model)) / 1024**2
act_mem = _benchmark_memory(model, inputs)
speed = _benchmark_speed(model, inputs)
print("unet origin, time: %.4fs, act mem: %.2fMB, para mem: %.2fMB, all mem: %.2fMB" %
(speed, act_mem, para_mem, act_mem + para_mem))
return act_mem
def _benchmark_memory(model, inputs):
with torch.no_grad():
torch.cuda.reset_peak_memory_stats()
now_mem = float(torch.cuda.memory_allocated()) / 1024**2
model(*inputs)
new_max_mem = float(torch.cuda.max_memory_allocated()) / 1024**2
return new_max_mem - now_mem
def _benchmark_speed(model, inputs, loop=5):
with torch.no_grad():
for _ in range(loop // 2 + 1):
model(*inputs)
torch.cuda.synchronize()
time1 = time.time()
for _ in range(loop):
model(*inputs)
torch.cuda.synchronize()
time2 = time.time()
return (time2 - time1) / loop
def benchmark_autochunk_unet(batch=1, height=448, width=448):
from test_autochunk_unet import UNet2DModel, get_data
model = UNet2DModel()
latent_shape = (batch, 3, height // 7, width // 7)
print("\nbatch: %d, height: %d, width: %d" % (batch, height, width))
max_mem = _benchmark_autochunk_unet_origin(model, get_data(latent_shape))
for ratio in [0.5, 0.4, 0.3, 0.2]:
try:
_benchmark_autochunk_unet_gm(model, get_data(latent_shape), max_mem * ratio)
except RuntimeError as e:
if e.args[0] == 'Search failed. Try a larger memory threshold.':
break
except Exception as e:
raise e
_benchmark_autochunk_unet_gm(model, get_data(latent_shape), None)
if __name__ == "__main__":
# launch colossalai
colossalai.launch(
config={},
rank=0,
world_size=1,
host="localhost",
port=free_port(),
backend="nccl",
)
benchmark_autochunk_unet(batch=1, height=224 * 3, width=224 * 3)
benchmark_autochunk_unet(batch=1, height=224 * 4, width=224 * 4)
benchmark_autochunk_unet(batch=1, height=224 * 5, width=224 * 5)
benchmark_autochunk_unet(batch=1, height=224 * 6, width=224 * 6)