mirror of https://github.com/hpcaitech/ColossalAI
345 lines
11 KiB
Python
345 lines
11 KiB
Python
|
import argparse, os, sys, glob
|
||
|
import cv2
|
||
|
import torch
|
||
|
import numpy as np
|
||
|
from omegaconf import OmegaConf
|
||
|
from PIL import Image
|
||
|
from tqdm import tqdm, trange
|
||
|
from imwatermark import WatermarkEncoder
|
||
|
from itertools import islice
|
||
|
from einops import rearrange
|
||
|
from torchvision.utils import make_grid
|
||
|
import time
|
||
|
from pytorch_lightning import seed_everything
|
||
|
from torch import autocast
|
||
|
from contextlib import contextmanager, nullcontext
|
||
|
|
||
|
from ldm.util import instantiate_from_config
|
||
|
from ldm.models.diffusion.ddim import DDIMSampler
|
||
|
from ldm.models.diffusion.plms import PLMSSampler
|
||
|
|
||
|
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
||
|
from transformers import AutoFeatureExtractor
|
||
|
|
||
|
|
||
|
# load safety model
|
||
|
safety_model_id = "CompVis/stable-diffusion-safety-checker"
|
||
|
safety_feature_extractor = AutoFeatureExtractor.from_pretrained(safety_model_id)
|
||
|
safety_checker = StableDiffusionSafetyChecker.from_pretrained(safety_model_id)
|
||
|
|
||
|
|
||
|
def chunk(it, size):
|
||
|
it = iter(it)
|
||
|
return iter(lambda: tuple(islice(it, size)), ())
|
||
|
|
||
|
|
||
|
def numpy_to_pil(images):
|
||
|
"""
|
||
|
Convert a numpy image or a batch of images to a PIL image.
|
||
|
"""
|
||
|
if images.ndim == 3:
|
||
|
images = images[None, ...]
|
||
|
images = (images * 255).round().astype("uint8")
|
||
|
pil_images = [Image.fromarray(image) for image in images]
|
||
|
|
||
|
return pil_images
|
||
|
|
||
|
|
||
|
def load_model_from_config(config, ckpt, verbose=False):
|
||
|
print(f"Loading model from {ckpt}")
|
||
|
pl_sd = torch.load(ckpt, map_location="cpu")
|
||
|
if "global_step" in pl_sd:
|
||
|
print(f"Global Step: {pl_sd['global_step']}")
|
||
|
sd = pl_sd["state_dict"]
|
||
|
model = instantiate_from_config(config.model)
|
||
|
m, u = model.load_state_dict(sd, strict=False)
|
||
|
if len(m) > 0 and verbose:
|
||
|
print("missing keys:")
|
||
|
print(m)
|
||
|
if len(u) > 0 and verbose:
|
||
|
print("unexpected keys:")
|
||
|
print(u)
|
||
|
|
||
|
model.cuda()
|
||
|
model.eval()
|
||
|
return model
|
||
|
|
||
|
|
||
|
def put_watermark(img, wm_encoder=None):
|
||
|
if wm_encoder is not None:
|
||
|
img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
|
||
|
img = wm_encoder.encode(img, 'dwtDct')
|
||
|
img = Image.fromarray(img[:, :, ::-1])
|
||
|
return img
|
||
|
|
||
|
|
||
|
def load_replacement(x):
|
||
|
try:
|
||
|
hwc = x.shape
|
||
|
y = Image.open("assets/rick.jpeg").convert("RGB").resize((hwc[1], hwc[0]))
|
||
|
y = (np.array(y)/255.0).astype(x.dtype)
|
||
|
assert y.shape == x.shape
|
||
|
return y
|
||
|
except Exception:
|
||
|
return x
|
||
|
|
||
|
|
||
|
def check_safety(x_image):
|
||
|
safety_checker_input = safety_feature_extractor(numpy_to_pil(x_image), return_tensors="pt")
|
||
|
x_checked_image, has_nsfw_concept = safety_checker(images=x_image, clip_input=safety_checker_input.pixel_values)
|
||
|
assert x_checked_image.shape[0] == len(has_nsfw_concept)
|
||
|
for i in range(len(has_nsfw_concept)):
|
||
|
if has_nsfw_concept[i]:
|
||
|
x_checked_image[i] = load_replacement(x_checked_image[i])
|
||
|
return x_checked_image, has_nsfw_concept
|
||
|
|
||
|
|
||
|
def main():
|
||
|
parser = argparse.ArgumentParser()
|
||
|
|
||
|
parser.add_argument(
|
||
|
"--prompt",
|
||
|
type=str,
|
||
|
nargs="?",
|
||
|
default="a painting of a virus monster playing guitar",
|
||
|
help="the prompt to render"
|
||
|
)
|
||
|
parser.add_argument(
|
||
|
"--outdir",
|
||
|
type=str,
|
||
|
nargs="?",
|
||
|
help="dir to write results to",
|
||
|
default="outputs/txt2img-samples"
|
||
|
)
|
||
|
parser.add_argument(
|
||
|
"--skip_grid",
|
||
|
action='store_true',
|
||
|
help="do not save a grid, only individual samples. Helpful when evaluating lots of samples",
|
||
|
)
|
||
|
parser.add_argument(
|
||
|
"--skip_save",
|
||
|
action='store_true',
|
||
|
help="do not save individual samples. For speed measurements.",
|
||
|
)
|
||
|
parser.add_argument(
|
||
|
"--ddim_steps",
|
||
|
type=int,
|
||
|
default=50,
|
||
|
help="number of ddim sampling steps",
|
||
|
)
|
||
|
parser.add_argument(
|
||
|
"--plms",
|
||
|
action='store_true',
|
||
|
help="use plms sampling",
|
||
|
)
|
||
|
parser.add_argument(
|
||
|
"--laion400m",
|
||
|
action='store_true',
|
||
|
help="uses the LAION400M model",
|
||
|
)
|
||
|
parser.add_argument(
|
||
|
"--fixed_code",
|
||
|
action='store_true',
|
||
|
help="if enabled, uses the same starting code across samples ",
|
||
|
)
|
||
|
parser.add_argument(
|
||
|
"--ddim_eta",
|
||
|
type=float,
|
||
|
default=0.0,
|
||
|
help="ddim eta (eta=0.0 corresponds to deterministic sampling",
|
||
|
)
|
||
|
parser.add_argument(
|
||
|
"--n_iter",
|
||
|
type=int,
|
||
|
default=2,
|
||
|
help="sample this often",
|
||
|
)
|
||
|
parser.add_argument(
|
||
|
"--H",
|
||
|
type=int,
|
||
|
default=512,
|
||
|
help="image height, in pixel space",
|
||
|
)
|
||
|
parser.add_argument(
|
||
|
"--W",
|
||
|
type=int,
|
||
|
default=512,
|
||
|
help="image width, in pixel space",
|
||
|
)
|
||
|
parser.add_argument(
|
||
|
"--C",
|
||
|
type=int,
|
||
|
default=4,
|
||
|
help="latent channels",
|
||
|
)
|
||
|
parser.add_argument(
|
||
|
"--f",
|
||
|
type=int,
|
||
|
default=8,
|
||
|
help="downsampling factor",
|
||
|
)
|
||
|
parser.add_argument(
|
||
|
"--n_samples",
|
||
|
type=int,
|
||
|
default=3,
|
||
|
help="how many samples to produce for each given prompt. A.k.a. batch size",
|
||
|
)
|
||
|
parser.add_argument(
|
||
|
"--n_rows",
|
||
|
type=int,
|
||
|
default=0,
|
||
|
help="rows in the grid (default: n_samples)",
|
||
|
)
|
||
|
parser.add_argument(
|
||
|
"--scale",
|
||
|
type=float,
|
||
|
default=7.5,
|
||
|
help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))",
|
||
|
)
|
||
|
parser.add_argument(
|
||
|
"--from-file",
|
||
|
type=str,
|
||
|
help="if specified, load prompts from this file",
|
||
|
)
|
||
|
parser.add_argument(
|
||
|
"--config",
|
||
|
type=str,
|
||
|
default="configs/stable-diffusion/v1-inference.yaml",
|
||
|
help="path to config which constructs model",
|
||
|
)
|
||
|
parser.add_argument(
|
||
|
"--ckpt",
|
||
|
type=str,
|
||
|
default="models/ldm/stable-diffusion-v1/model.ckpt",
|
||
|
help="path to checkpoint of model",
|
||
|
)
|
||
|
parser.add_argument(
|
||
|
"--seed",
|
||
|
type=int,
|
||
|
default=42,
|
||
|
help="the seed (for reproducible sampling)",
|
||
|
)
|
||
|
parser.add_argument(
|
||
|
"--precision",
|
||
|
type=str,
|
||
|
help="evaluate at this precision",
|
||
|
choices=["full", "autocast"],
|
||
|
default="autocast"
|
||
|
)
|
||
|
opt = parser.parse_args()
|
||
|
|
||
|
if opt.laion400m:
|
||
|
print("Falling back to LAION 400M model...")
|
||
|
opt.config = "configs/latent-diffusion/txt2img-1p4B-eval.yaml"
|
||
|
opt.ckpt = "models/ldm/text2img-large/model.ckpt"
|
||
|
opt.outdir = "outputs/txt2img-samples-laion400m"
|
||
|
|
||
|
seed_everything(opt.seed)
|
||
|
|
||
|
config = OmegaConf.load(f"{opt.config}")
|
||
|
model = load_model_from_config(config, f"{opt.ckpt}")
|
||
|
|
||
|
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
||
|
model = model.to(device)
|
||
|
|
||
|
if opt.plms:
|
||
|
sampler = PLMSSampler(model)
|
||
|
else:
|
||
|
sampler = DDIMSampler(model)
|
||
|
|
||
|
os.makedirs(opt.outdir, exist_ok=True)
|
||
|
outpath = opt.outdir
|
||
|
|
||
|
print("Creating invisible watermark encoder (see https://github.com/ShieldMnt/invisible-watermark)...")
|
||
|
wm = "StableDiffusionV1"
|
||
|
wm_encoder = WatermarkEncoder()
|
||
|
wm_encoder.set_watermark('bytes', wm.encode('utf-8'))
|
||
|
|
||
|
batch_size = opt.n_samples
|
||
|
n_rows = opt.n_rows if opt.n_rows > 0 else batch_size
|
||
|
if not opt.from_file:
|
||
|
prompt = opt.prompt
|
||
|
assert prompt is not None
|
||
|
data = [batch_size * [prompt]]
|
||
|
|
||
|
else:
|
||
|
print(f"reading prompts from {opt.from_file}")
|
||
|
with open(opt.from_file, "r") as f:
|
||
|
data = f.read().splitlines()
|
||
|
data = list(chunk(data, batch_size))
|
||
|
|
||
|
sample_path = os.path.join(outpath, "samples")
|
||
|
os.makedirs(sample_path, exist_ok=True)
|
||
|
base_count = len(os.listdir(sample_path))
|
||
|
grid_count = len(os.listdir(outpath)) - 1
|
||
|
|
||
|
start_code = None
|
||
|
if opt.fixed_code:
|
||
|
start_code = torch.randn([opt.n_samples, opt.C, opt.H // opt.f, opt.W // opt.f], device=device)
|
||
|
|
||
|
precision_scope = autocast if opt.precision=="autocast" else nullcontext
|
||
|
with torch.no_grad():
|
||
|
with precision_scope("cuda"):
|
||
|
with model.ema_scope():
|
||
|
tic = time.time()
|
||
|
all_samples = list()
|
||
|
for n in trange(opt.n_iter, desc="Sampling"):
|
||
|
for prompts in tqdm(data, desc="data"):
|
||
|
uc = None
|
||
|
if opt.scale != 1.0:
|
||
|
uc = model.get_learned_conditioning(batch_size * [""])
|
||
|
if isinstance(prompts, tuple):
|
||
|
prompts = list(prompts)
|
||
|
c = model.get_learned_conditioning(prompts)
|
||
|
shape = [opt.C, opt.H // opt.f, opt.W // opt.f]
|
||
|
samples_ddim, _ = sampler.sample(S=opt.ddim_steps,
|
||
|
conditioning=c,
|
||
|
batch_size=opt.n_samples,
|
||
|
shape=shape,
|
||
|
verbose=False,
|
||
|
unconditional_guidance_scale=opt.scale,
|
||
|
unconditional_conditioning=uc,
|
||
|
eta=opt.ddim_eta,
|
||
|
x_T=start_code)
|
||
|
|
||
|
x_samples_ddim = model.decode_first_stage(samples_ddim)
|
||
|
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
||
|
x_samples_ddim = x_samples_ddim.cpu().permute(0, 2, 3, 1).numpy()
|
||
|
|
||
|
x_checked_image, has_nsfw_concept = check_safety(x_samples_ddim)
|
||
|
|
||
|
x_checked_image_torch = torch.from_numpy(x_checked_image).permute(0, 3, 1, 2)
|
||
|
|
||
|
if not opt.skip_save:
|
||
|
for x_sample in x_checked_image_torch:
|
||
|
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
|
||
|
img = Image.fromarray(x_sample.astype(np.uint8))
|
||
|
img = put_watermark(img, wm_encoder)
|
||
|
img.save(os.path.join(sample_path, f"{base_count:05}.png"))
|
||
|
base_count += 1
|
||
|
|
||
|
if not opt.skip_grid:
|
||
|
all_samples.append(x_checked_image_torch)
|
||
|
|
||
|
if not opt.skip_grid:
|
||
|
# additionally, save as grid
|
||
|
grid = torch.stack(all_samples, 0)
|
||
|
grid = rearrange(grid, 'n b c h w -> (n b) c h w')
|
||
|
grid = make_grid(grid, nrow=n_rows)
|
||
|
|
||
|
# to image
|
||
|
grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy()
|
||
|
img = Image.fromarray(grid.astype(np.uint8))
|
||
|
img = put_watermark(img, wm_encoder)
|
||
|
img.save(os.path.join(outpath, f'grid-{grid_count:04}.png'))
|
||
|
grid_count += 1
|
||
|
|
||
|
toc = time.time()
|
||
|
|
||
|
print(f"Your samples are ready and waiting for you here: \n{outpath} \n"
|
||
|
f" \nEnjoy.")
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
main()
|