mirror of https://github.com/hpcaitech/ColossalAI
53 lines
1.7 KiB
Python
53 lines
1.7 KiB
Python
|
import torch
|
||
|
from torch.fx import GraphModule
|
||
|
import torch.nn as nn
|
||
|
import pytest
|
||
|
|
||
|
from colossalai.auto_parallel.solver.options import SolverOptions
|
||
|
from colossalai.auto_parallel.solver.strategies_constructor import StrategiesConstructor
|
||
|
from colossalai.fx.tracer.tracer import ColoTracer
|
||
|
from colossalai.device.device_mesh import DeviceMesh
|
||
|
|
||
|
|
||
|
class MatmulModel(nn.Module):
|
||
|
|
||
|
def __init__(self):
|
||
|
super().__init__()
|
||
|
|
||
|
def forward(self, x1, x2):
|
||
|
x = torch.matmul(x1, x2)
|
||
|
|
||
|
return x
|
||
|
|
||
|
|
||
|
def test_conv_handler():
|
||
|
physical_mesh_id = torch.arange(0, 4)
|
||
|
mesh_shape = (2, 2)
|
||
|
# [[0, 1]
|
||
|
# [2, 3]]
|
||
|
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
|
||
|
|
||
|
tracer = ColoTracer()
|
||
|
model = MatmulModel()
|
||
|
input_sample = {'x1': torch.rand(4, 4, 8).to('meta'), 'x2': torch.rand(4, 1, 8, 4).to('meta')}
|
||
|
# graph():
|
||
|
# %x1 : torch.Tensor [#users=1] = placeholder[target=x1]
|
||
|
# %x2 : torch.Tensor [#users=1] = placeholder[target=x2]
|
||
|
# %matmul : [#users=1] = call_function[target=torch.matmul](args = (%x1, %x2), kwargs = {})
|
||
|
# return matmul
|
||
|
graph = tracer.trace(root=model, meta_args=input_sample)
|
||
|
gm = GraphModule(model, graph, model.__class__.__name__)
|
||
|
# [x1, x2, matmul, output]
|
||
|
nodes = [node for node in gm.graph.nodes]
|
||
|
solver_options = SolverOptions(fast=True)
|
||
|
strategies_constructor = StrategiesConstructor(graph, device_mesh, solver_options)
|
||
|
|
||
|
strategies_constructor.build_strategies_and_cost()
|
||
|
strategy_map = strategies_constructor.strategy_map
|
||
|
matmul_strategies = strategy_map[nodes[2]]
|
||
|
assert len(matmul_strategies) == 30
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
test_conv_handler()
|