mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
110 lines
2.7 KiB
110 lines
2.7 KiB
2 years ago
|
import gzip
|
||
|
import random
|
||
|
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
import torch.optim as optim
|
||
|
import tqdm
|
||
|
from palm_pytorch import PaLM
|
||
|
from palm_pytorch.autoregressive_wrapper import AutoregressiveWrapper
|
||
|
from torch.nn import functional as F
|
||
|
from torch.utils.data import DataLoader, Dataset
|
||
|
|
||
|
# constants
|
||
|
|
||
|
NUM_BATCHES = int(1e5)
|
||
|
BATCH_SIZE = 4
|
||
|
GRADIENT_ACCUMULATE_EVERY = 4
|
||
|
LEARNING_RATE = 2e-4
|
||
|
VALIDATE_EVERY = 100
|
||
|
GENERATE_EVERY = 500
|
||
|
GENERATE_LENGTH = 512
|
||
|
SEQ_LEN = 1024
|
||
|
|
||
|
# helpers
|
||
|
|
||
|
|
||
|
def cycle(loader):
|
||
|
while True:
|
||
|
for data in loader:
|
||
|
yield data
|
||
|
|
||
|
|
||
|
def decode_token(token):
|
||
|
return str(chr(max(32, token)))
|
||
|
|
||
|
|
||
|
def decode_tokens(tokens):
|
||
|
return "".join(list(map(decode_token, tokens)))
|
||
|
|
||
|
|
||
|
# instantiate GPT-like decoder model
|
||
|
|
||
|
model = PaLM(num_tokens=256, dim=512, depth=8)
|
||
|
|
||
|
model = AutoregressiveWrapper(model, max_seq_len=2048)
|
||
|
model.cuda()
|
||
|
|
||
|
# prepare enwik8 data
|
||
|
|
||
|
with gzip.open("./data/enwik8.gz") as file:
|
||
|
X = np.fromstring(file.read(int(95e6)), dtype=np.uint8)
|
||
|
trX, vaX = np.split(X, [int(90e6)])
|
||
|
data_train, data_val = torch.from_numpy(trX), torch.from_numpy(vaX)
|
||
|
|
||
|
|
||
|
class TextSamplerDataset(Dataset):
|
||
|
|
||
|
def __init__(self, data, seq_len):
|
||
|
super().__init__()
|
||
|
self.data = data
|
||
|
self.seq_len = seq_len
|
||
|
|
||
|
def __getitem__(self, index):
|
||
|
rand_start = torch.randint(0, self.data.size(0) - self.seq_len, (1,))
|
||
|
full_seq = self.data[rand_start:rand_start + self.seq_len + 1].long()
|
||
|
return full_seq.cuda()
|
||
|
|
||
|
def __len__(self):
|
||
|
return self.data.size(0) // self.seq_len
|
||
|
|
||
|
|
||
|
train_dataset = TextSamplerDataset(data_train, SEQ_LEN)
|
||
|
val_dataset = TextSamplerDataset(data_val, SEQ_LEN)
|
||
|
train_loader = cycle(DataLoader(train_dataset, batch_size=BATCH_SIZE))
|
||
|
val_loader = cycle(DataLoader(val_dataset, batch_size=BATCH_SIZE))
|
||
|
|
||
|
# optimizer
|
||
|
|
||
|
optim = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE)
|
||
|
|
||
|
# training
|
||
|
|
||
|
for i in tqdm.tqdm(range(NUM_BATCHES), mininterval=10.0, desc="training"):
|
||
|
model.train()
|
||
|
|
||
|
for __ in range(GRADIENT_ACCUMULATE_EVERY):
|
||
|
loss = model(next(train_loader))
|
||
|
loss.backward()
|
||
|
|
||
|
print(f"training loss: {loss.item()}")
|
||
|
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
|
||
|
optim.step()
|
||
|
optim.zero_grad()
|
||
|
|
||
|
if i % VALIDATE_EVERY == 0:
|
||
|
model.eval()
|
||
|
with torch.no_grad():
|
||
|
loss = model(next(val_loader))
|
||
|
print(f"validation loss: {loss.item()}")
|
||
|
|
||
|
if i % GENERATE_EVERY == 0:
|
||
|
model.eval()
|
||
|
inp = random.choice(val_dataset)[:-1]
|
||
|
prime = decode_tokens(inp)
|
||
|
print(f"%s \n\n %s", (prime, "*" * 100))
|
||
|
|
||
|
sample = model.generate(inp[None, ...], GENERATE_LENGTH)
|
||
|
output_str = decode_tokens(sample[0])
|
||
|
print(output_str)
|