ColossalAI/colossalai/nn/layer/moe/layers.py

264 lines
11 KiB
Python
Raw Normal View History

2022-01-07 07:08:36 +00:00
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.distributed as dist
from colossalai.core import global_context as gpc
2022-01-07 07:08:36 +00:00
from colossalai.global_variables import moe_env
from colossalai.context import ParallelMode
2022-01-07 07:08:36 +00:00
from colossalai.utils import get_current_device
2022-02-27 14:28:39 +00:00
from ._operation import U_CUDA_MODE, AllToAll, AllGather, ReduceScatter, MoeDispatch, MoeCombine, moe_cumsum
from .experts import MoeExperts
from .utils import autocast_softmax
2022-01-07 07:08:36 +00:00
class Top1Router(nn.Module):
"""Top1 router that returns the dispatch mask [s, e, c] and combine weight [s, e, c]
for routing usage. More deailted function can be found in the paper about Switch Transformer
of Google.
2022-01-21 02:44:30 +00:00
:param capacity_factor: Capacity factor in routing
:param min_capacity: The minimum number of the capacity of each expert
:param noisy_func: Noisy function used in logits
:type capacity_factor: float
:type min_capacity: int
:type noisy_func: Callable, optional
2022-01-07 07:08:36 +00:00
"""
def __init__(self, capacity_factor: float, min_capacity: int = 0, select_policy: str = "first", noisy_func=None):
2022-01-07 07:08:36 +00:00
super().__init__()
self.capacity_factor = capacity_factor
self.min_capacity = min_capacity
self.select_policy = select_policy
2022-01-07 07:08:36 +00:00
self.noisy_func = noisy_func
assert select_policy in {"first", "random"}
if select_policy == "random":
self.uniform = torch.distributions.uniform.Uniform(low=torch.tensor(0.0, device=get_current_device()),
high=torch.tensor(1.0,
device=get_current_device())).rsample
def get_capacity(
self,
logits_shape,
):
capacity = math.floor(self.capacity_factor * logits_shape[-2] / logits_shape[-1])
capacity += capacity % 2
capacity = max(capacity, self.min_capacity)
assert capacity > 0
2022-01-07 07:08:36 +00:00
return capacity
def forward(self, inputs: torch.Tensor, cuda_mode: bool = False):
2022-01-07 07:08:36 +00:00
if self.noisy_func is not None:
inputs_noisy = self.noisy_func(inputs)
else:
inputs_noisy = inputs
logits = autocast_softmax(inputs, dim=-1)
num_experts = logits.size(-1)
2022-01-07 07:08:36 +00:00
capacity = self.get_capacity(logits.shape)
top1_idx = torch.argmax(inputs_noisy, dim=-1)
mask = F.one_hot(top1_idx, num_classes=num_experts).to(torch.int32)
2022-01-07 07:08:36 +00:00
if self.training:
me = torch.mean(logits, dim=0)
ce = torch.mean(mask.float(), dim=0)
l_aux = num_experts * torch.sum(me * ce)
moe_env.add_loss(l_aux)
else:
max_num = torch.max(torch.sum(mask, dim=0))
dist.all_reduce(max_num, op=dist.ReduceOp.MAX, group=gpc.get_group(ParallelMode.MOE_MODEL))
capacity = max_num.item()
if not self.training:
ranks = moe_cumsum(mask)
elif self.select_policy == "random":
rand_mask = mask * self.uniform(mask.shape)
_, dispatch_idx = torch.topk(rand_mask, k=capacity, dim=0)
mask = mask * torch.zeros_like(mask).scatter_(0, dispatch_idx, 1)
ranks = moe_cumsum(mask)
elif self.select_policy == "first":
ranks = moe_cumsum(mask)
mask = mask * torch.lt(ranks, capacity)
else:
raise NotImplementedError("Not support such select policy yet.")
2022-01-07 07:08:36 +00:00
ranks = torch.sum(mask * ranks, dim=-1)
2022-01-07 07:08:36 +00:00
if cuda_mode:
mask = torch.sum(mask, dim=-1)
mask = torch.stack([mask], dim=0).to(torch.int32)
dest_idx = torch.stack([top1_idx * capacity + ranks], dim=0).to(torch.int32)
return logits, mask, dest_idx, num_experts * capacity
else:
ranks = F.one_hot(ranks, num_classes=capacity)
weight = mask * logits.type_as(inputs)
combine_weights = weight.unsqueeze(2) * ranks.unsqueeze(1)
sec_mask = combine_weights.bool()
return combine_weights, sec_mask
2022-01-07 07:08:36 +00:00
class Top2Router(nn.Module):
"""Top2 router that returns the dispatch mask [s, e, c] and combine weight [s, e, c]
for routing usage. More deailted function can be found in the paper about ViT-MoE.
2022-01-21 02:44:30 +00:00
:param capacity_factor: Capacity factor in routing
:param noisy_func: Noisy function used in logits
:type capacity_factor: float
:type noisy_func: Callable, optional
2022-01-07 07:08:36 +00:00
"""
def __init__(self, capacity_factor: float, noisy_func=None):
super().__init__()
self.capacity_factor = capacity_factor
self.noisy_func = noisy_func
def get_capacity(self, logits_shape):
capacity = math.floor(2 * self.capacity_factor * logits_shape[-2] / logits_shape[-1])
capacity += capacity % 2
assert capacity > 0
2022-01-07 07:08:36 +00:00
return capacity
def forward(self, inputs: torch.Tensor, cuda_mode: bool = False):
# inputs: [s, h]
2022-01-07 07:08:36 +00:00
if self.noisy_func is not None:
inputs = self.noisy_func(inputs)
logits = autocast_softmax(inputs, dim=-1) # logits: [s, e]
2022-01-07 07:08:36 +00:00
num_experts = logits.size(-1)
capacity = self.get_capacity(logits.shape)
top1_idx = torch.argmax(logits, dim=-1)
mask1 = F.one_hot(top1_idx, num_classes=num_experts).to(torch.int32)
logits_except1 = logits.masked_fill(mask1.bool(), float("-inf"))
top2_idx = torch.argmax(logits_except1, dim=-1)
mask2 = F.one_hot(top2_idx, num_classes=num_experts).to(torch.int32)
cmask = (mask1 + mask2) # loss: [s, e]
if self.training:
me = torch.mean(logits, dim=0)
ce = torch.mean(cmask.float(), dim=0)
l_aux = num_experts * torch.sum(me * ce) / 2.0
moe_env.add_loss(l_aux)
else:
max_num = torch.max(torch.sum(cmask, dim=0))
dist.all_reduce(max_num, op=dist.ReduceOp.MAX, group=gpc.get_group(ParallelMode.MOE_MODEL))
capacity = max_num.item()
2022-01-07 07:08:36 +00:00
rank1 = moe_cumsum(mask1) # rank1: [s, e]
rank2 = moe_cumsum(mask2)
rank2 += torch.sum(mask1, dim=-2, keepdim=True)
2022-01-07 07:08:36 +00:00
mask1 *= torch.lt(rank1, capacity)
mask2 *= torch.lt(rank2, capacity)
2022-01-07 07:08:36 +00:00
rank1 = torch.sum(mask1 * rank1, dim=-1)
rank2 = torch.sum(mask2 * rank2, dim=-1)
2022-01-07 07:08:36 +00:00
if cuda_mode:
mask1 = torch.sum(mask1, dim=-1)
mask2 = torch.sum(mask2, dim=-1)
2022-01-07 07:08:36 +00:00
mask = torch.stack([mask1, mask2], dim=0).to(torch.int32)
dest_idx = torch.stack([top1_idx * capacity + rank1, top2_idx * capacity + rank2], dim=0).to(torch.int32)
2022-01-07 07:08:36 +00:00
return logits, mask, dest_idx, num_experts * capacity
else:
weight1 = mask1 * logits.type_as(inputs)
weight2 = mask2 * logits.type_as(inputs)
rank1_sc = F.one_hot(rank1, num_classes=capacity)
rank2_sc = F.one_hot(rank2, num_classes=capacity)
2022-01-07 07:08:36 +00:00
cb_weight1 = weight1.unsqueeze(2) * rank1_sc.unsqueeze(1)
cb_weight2 = weight2.unsqueeze(2) * rank2_sc.unsqueeze(1)
cb_weight = cb_weight1 + cb_weight2
sec_mask = cb_weight.bool()
2022-01-07 07:08:36 +00:00
return cb_weight, sec_mask
2022-01-07 07:08:36 +00:00
class MoeLayer(nn.Module):
"""A MoE layer, that puts its input tensor to its gate and uses the output logits
to router all tokens, is mainly used to exchange all tokens for every expert across
the moe tensor group by all to all comunication. Then it will get the output of all
experts and exchange the output. At last returns the output of the moe system.
2022-01-21 02:44:30 +00:00
:param dim_model: Dimension of model
:param num_experts: The number of experts
:param router: Instance of router used in routing
:param experts: Instance of experts generated by Expert
:type dim_model: int
:type num_experts: int
:type router: nn.Module
:type experts: nn.Module
2022-01-07 07:08:36 +00:00
"""
2022-02-27 14:28:39 +00:00
def __init__(self, dim_model: int, num_experts: int, router: nn.Module, experts: MoeExperts):
2022-01-07 07:08:36 +00:00
super().__init__()
self.d_model = dim_model
self.num_experts = num_experts
self.gate = nn.Linear(dim_model, num_experts, bias=False, device=get_current_device())
2022-01-07 07:08:36 +00:00
self.router = router
self.experts = experts
self.cuda_mode = True if U_CUDA_MODE and moe_env.enable_cuda else False
2022-01-07 07:08:36 +00:00
2022-02-27 14:28:39 +00:00
def a2a_process(self, dispatch_data: torch.Tensor):
expert_input = AllToAll.apply(dispatch_data, ParallelMode.MOE_MODEL)
2022-01-07 07:08:36 +00:00
input_shape = expert_input.shape
2022-01-07 07:08:36 +00:00
expert_input = expert_input.reshape(moe_env.model_parallel_size,
self.num_experts // moe_env.model_parallel_size, -1, self.d_model)
2022-01-07 07:08:36 +00:00
expert_output = self.experts(expert_input)
expert_output = expert_output.reshape(input_shape)
2022-01-07 07:08:36 +00:00
expert_output = AllToAll.apply(expert_output, ParallelMode.MOE_MODEL)
return expert_output
2022-01-07 07:08:36 +00:00
2022-02-27 14:28:39 +00:00
def tp_process(self, dispatch_data: torch.Tensor):
expert_in = AllGather.apply(dispatch_data, ParallelMode.MOE_MODEL)
expert_out = self.experts(expert_in)
expert_out = ReduceScatter.apply(expert_out, ParallelMode.MOE_MODEL)
return expert_out
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
tokens = inputs.reshape(-1, self.d_model)
gate_output = self.gate(tokens)
router_res = self.router(gate_output, self.cuda_mode)
2022-01-07 07:08:36 +00:00
if self.cuda_mode:
2022-02-27 14:28:39 +00:00
dispatch_data = MoeDispatch.apply(tokens, *router_res[1:])
dispatch_data = dispatch_data.reshape(self.num_experts, -1, self.d_model)
else:
sec_mask_f = router_res[1].type_as(inputs)
dispatch_data = torch.matmul(sec_mask_f.permute(1, 2, 0), tokens)
# dispatch_data [e, c, h]
if self.experts.comm == "all_to_all":
expert_output = self.a2a_process(dispatch_data)
elif self.experts.comm == "all_gather":
expert_output = self.tp_process(dispatch_data)
else:
raise NotImplementedError("This kind of communication has not been implemented yet.\n Please use Experts "
"build function.")
# expert_output [e, c, h]
if self.cuda_mode:
expert_output = expert_output.reshape(-1, self.d_model)
ans = MoeCombine.apply(expert_output, *router_res)
else:
2022-02-27 14:28:39 +00:00
combine_weights = router_res[0]
combine_weights = combine_weights.view(combine_weights.shape[0], -1)
expert_output = expert_output.view(-1, expert_output.shape[-1])
2022-02-27 14:28:39 +00:00
ans = torch.matmul(combine_weights, expert_output)
2022-01-07 07:08:36 +00:00
2022-02-27 14:28:39 +00:00
ans = ans.reshape(inputs.shape)
return ans