2021-12-29 15:32:10 +00:00
|
|
|
import math
|
2022-02-14 03:15:02 +00:00
|
|
|
from typing import Callable
|
2021-12-29 15:32:10 +00:00
|
|
|
|
|
|
|
from colossalai.utils import get_current_device
|
|
|
|
from torch import dtype, nn
|
|
|
|
|
|
|
|
from ... import init as init
|
|
|
|
from ..parallel_1d import *
|
|
|
|
from ..parallel_2d import *
|
|
|
|
from ..parallel_2p5d import *
|
|
|
|
from ..parallel_3d import *
|
|
|
|
from ..utils import get_tensor_parallel_mode
|
|
|
|
from ..vanilla import *
|
|
|
|
|
2022-02-14 03:15:02 +00:00
|
|
|
_parallel_embedding = {
|
|
|
|
'2d': Embedding2D,
|
|
|
|
'2.5d': Embedding2p5D,
|
|
|
|
'3d': Embedding3D,
|
|
|
|
}
|
|
|
|
|
|
|
|
_vocab_parallel_embedding = {
|
|
|
|
'1d': VocabParallelEmbedding1D,
|
|
|
|
'2d': VocabParallelEmbedding2D,
|
|
|
|
'2.5d': VocabParallelEmbedding2p5D,
|
|
|
|
'3d': VocabParallelEmbedding3D
|
|
|
|
}
|
2021-12-29 15:32:10 +00:00
|
|
|
|
|
|
|
_parallel_patchembedding = {
|
2022-02-14 03:15:02 +00:00
|
|
|
None: VanillaPatchEmbedding,
|
2021-12-29 15:32:10 +00:00
|
|
|
'1d': VanillaPatchEmbedding,
|
|
|
|
'2d': PatchEmbedding2D,
|
|
|
|
'2.5d': PatchEmbedding2p5D,
|
|
|
|
'3d': PatchEmbedding3D
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
class Embedding(nn.Module):
|
2022-01-10 10:05:58 +00:00
|
|
|
"""
|
|
|
|
Embedding for colossalai
|
|
|
|
|
|
|
|
:param num_embeddings: number of embeddings
|
|
|
|
:type num_embeddings: int
|
|
|
|
:param embedding_dim: dimension of embedding
|
|
|
|
:type embedding_dim: int
|
|
|
|
:param padding_idx: index of padding, defaults to None
|
|
|
|
:type padding_idx: int, optional
|
|
|
|
:param dtype: The dtype of parameters, defaults to None
|
|
|
|
:type dtype: torch.dtype, optional
|
|
|
|
:param weight_initializer: The intializer of weight, defaults to normal initializer
|
|
|
|
:type weight_initializer: typing.Callable, optional
|
2022-01-21 02:44:30 +00:00
|
|
|
:param args: Args used in F.embedding
|
|
|
|
:param kwargs: Kwargs used in F.embedding
|
2022-01-10 10:05:58 +00:00
|
|
|
"""
|
2022-02-14 03:15:02 +00:00
|
|
|
|
2021-12-29 15:32:10 +00:00
|
|
|
def __init__(self,
|
|
|
|
num_embeddings: int,
|
|
|
|
embedding_dim: int,
|
|
|
|
padding_idx: int = None,
|
|
|
|
dtype: dtype = None,
|
|
|
|
weight_initializer: Callable = init.normal_(),
|
2022-02-14 03:15:02 +00:00
|
|
|
vocab_parallel_limit: int = 2048,
|
2021-12-29 15:32:10 +00:00
|
|
|
*args,
|
|
|
|
**kwargs) -> None:
|
|
|
|
super().__init__()
|
|
|
|
tensor_parallel = get_tensor_parallel_mode()
|
2022-02-14 03:15:02 +00:00
|
|
|
if tensor_parallel is None or (tensor_parallel == '1d' and num_embeddings <= vocab_parallel_limit):
|
|
|
|
self.embed = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx, *args,
|
|
|
|
**kwargs).to(dtype).to(get_current_device())
|
2021-12-29 15:32:10 +00:00
|
|
|
weight_initializer(self.embed.weight, fan_in=num_embeddings, fan_out=embedding_dim)
|
2022-02-14 03:15:02 +00:00
|
|
|
elif num_embeddings <= vocab_parallel_limit:
|
2021-12-29 15:32:10 +00:00
|
|
|
self.embed = _parallel_embedding[tensor_parallel](
|
|
|
|
num_embeddings,
|
|
|
|
embedding_dim,
|
|
|
|
padding_idx=padding_idx,
|
|
|
|
dtype=dtype,
|
|
|
|
weight_initializer=weight_initializer,
|
|
|
|
*args,
|
|
|
|
**kwargs,
|
|
|
|
)
|
2022-02-14 03:15:02 +00:00
|
|
|
else:
|
|
|
|
self.embed = _vocab_parallel_embedding[tensor_parallel](
|
|
|
|
num_embeddings,
|
|
|
|
embedding_dim,
|
|
|
|
padding_idx=padding_idx,
|
|
|
|
dtype=dtype,
|
|
|
|
weight_initializer=weight_initializer,
|
|
|
|
*args,
|
|
|
|
**kwargs,
|
|
|
|
)
|
2021-12-29 15:32:10 +00:00
|
|
|
|
|
|
|
@property
|
|
|
|
def weight(self):
|
|
|
|
return self.embed.weight
|
|
|
|
|
|
|
|
def forward(self, *args):
|
|
|
|
return self.embed(*args)
|
|
|
|
|
|
|
|
|
|
|
|
class PatchEmbedding(nn.Module):
|
2022-01-10 10:05:58 +00:00
|
|
|
"""
|
|
|
|
2D Image to Patch Embedding
|
|
|
|
|
|
|
|
:param img_size: image size
|
|
|
|
:type img_size: int
|
|
|
|
:param patch_size: patch size
|
|
|
|
:type patch_size: int
|
|
|
|
:param in_chans: number of channels of input image
|
|
|
|
:type in_chans: int
|
|
|
|
:param embed_size: size of embedding
|
|
|
|
:type embed_size: int
|
|
|
|
:param dtype: The dtype of parameters, defaults to None
|
|
|
|
:type dtype: torch.dtype, optional
|
|
|
|
:param flatten: whether to flatten output tensor, defaults to True
|
|
|
|
:type flatten: bool, optional
|
|
|
|
:param weight_initializer: The intializer of weight, defaults to kaiming uniform initializer
|
|
|
|
:type weight_initializer: typing.Callable, optional
|
|
|
|
:param bias_initializer: The intializer of bias, defaults to xavier uniform initializer
|
|
|
|
:type bias_initializer: typing.Callable, optional
|
|
|
|
:param position_embed_initializer: The intializer of position embedding, defaults to zero
|
|
|
|
:type position_embed_initializer: typing.Callable, optional
|
|
|
|
"""
|
2022-02-14 03:15:02 +00:00
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
img_size: int,
|
|
|
|
patch_size: int,
|
|
|
|
in_chans: int,
|
|
|
|
embed_size: int,
|
|
|
|
dtype: dtype = None,
|
|
|
|
flatten: bool = True,
|
|
|
|
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
|
|
|
|
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1),
|
|
|
|
position_embed_initializer: Callable = init.zeros_()
|
|
|
|
) -> None:
|
2021-12-29 15:32:10 +00:00
|
|
|
super().__init__()
|
|
|
|
tensor_parallel = get_tensor_parallel_mode()
|
|
|
|
self.embed = _parallel_patchembedding[tensor_parallel](
|
|
|
|
img_size,
|
|
|
|
patch_size,
|
|
|
|
in_chans,
|
|
|
|
embed_size,
|
|
|
|
dtype=dtype,
|
|
|
|
flatten=flatten,
|
|
|
|
weight_initializer=weight_initializer,
|
|
|
|
bias_initializer=bias_initializer,
|
|
|
|
position_embed_initializer=position_embed_initializer,
|
|
|
|
)
|
|
|
|
|
|
|
|
@property
|
|
|
|
def weight(self):
|
|
|
|
return self.embed.weight
|
|
|
|
|
|
|
|
@property
|
|
|
|
def bias(self):
|
|
|
|
return self.embed.bias
|
|
|
|
|
|
|
|
@property
|
|
|
|
def pos_embed(self):
|
|
|
|
return self.embed.pos_embed
|
|
|
|
|
|
|
|
@property
|
|
|
|
def cls_token(self):
|
|
|
|
return self.embed.cls_token
|
|
|
|
|
|
|
|
def forward(self, *args):
|
|
|
|
return self.embed(*args)
|