ColossalAI/colossalai/engine/gradient_handler/_data_parallel_gradient_han...

49 lines
2.0 KiB
Python
Raw Normal View History

2021-10-28 16:21:23 +00:00
#!/usr/bin/env python
import torch.distributed as dist
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
from colossalai.core import global_context as gpc
from colossalai.registry import GRADIENT_HANDLER
from ._base_gradient_handler import BaseGradientHandler
from ...context.parallel_mode import ParallelMode
@GRADIENT_HANDLER.register_module
class DataParallelGradientHandler(BaseGradientHandler):
"""A helper class to handle all-reduce operations in a data parallel group.
A all-reduce collective communication will be operated in
:func:`handle_gradient` among a data parallel group.
For better performance, it bucketizes the gradients of all parameters that are
the same type to improve the efficiency of communication.
"""
def handle_gradient(self):
"""A method running a all-reduce operation in a data parallel group.
"""
# TODO: add memory buffer
if gpc.data_parallel_size > 1:
# bucketize and all-reduce
buckets = {}
# Pack the buckets.
for param in self._model.parameters():
if param.requires_grad and param.grad is not None:
tp = param.data.type()
if tp not in buckets:
buckets[tp] = []
buckets[tp].append(param)
# param.main_grad = param.grad
2021-10-28 16:21:23 +00:00
# For each bucket, all-reduce and copy all-reduced grads.
for tp in buckets:
bucket = buckets[tp]
grads = [param.grad.data for param in bucket]
coalesced = _flatten_dense_tensors(grads)
coalesced /= gpc.get_world_size(ParallelMode.DATA)
dist.all_reduce(
coalesced, group=gpc.get_group(ParallelMode.DATA))
for buf, synced in zip(grads, _unflatten_dense_tensors(
coalesced, grads)):
buf.copy_(synced)