ColossalAI/colossalai/shardformer/policies/mistral.py

193 lines
7.0 KiB
Python
Raw Normal View History

import warnings
from typing import Dict, Union
import torch.nn as nn
from colossalai.shardformer.layer import FusedRMSNorm, Linear1D_Col, Linear1D_Row, VocabParallelEmbedding1D
from ..modeling.mistral import get_mistral_flash_attention_forward
from .base_policy import ModulePolicyDescription, Policy, SubModuleReplacementDescription
__all__ = ["MistralPolicy", "MistralModelPolicy", "MistralForCausalLMPolicy", "MistralForSequenceClassificationPolicy"]
class MistralPolicy(Policy):
def config_sanity_check(self):
pass
def preprocess(self):
if self.shard_config.enable_tensor_parallelism:
# Resize embedding
vocab_size = self.model.config.vocab_size
world_size = self.shard_config.tensor_parallel_size
if vocab_size % world_size != 0:
new_vocab_size = vocab_size + world_size - vocab_size % world_size
self.model.resize_token_embeddings(new_vocab_size)
return self.model
def module_policy(self) -> Dict[Union[str, nn.Module], ModulePolicyDescription]:
from transformers.models.mistral.modeling_mistral import MistralAttention, MistralDecoderLayer, MistralModel
policy = {}
if self.shard_config.enable_sequence_parallelism:
self.shard_config.enable_sequence_parallelism = False
warnings.warn(
"Mistral dosen't support sequence parallelism now, will ignore the sequence parallelism flag."
)
if self.shard_config.enable_tensor_parallelism:
decoder_attribute_replacement = {
"self_attn.hidden_size": self.model.config.hidden_size // self.shard_config.tensor_parallel_size,
"self_attn.num_heads": self.model.config.num_attention_heads // self.shard_config.tensor_parallel_size,
"self_attn.num_key_value_heads": self.model.config.num_key_value_heads
// self.shard_config.tensor_parallel_size,
}
policy[MistralDecoderLayer] = ModulePolicyDescription(
attribute_replacement=decoder_attribute_replacement,
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="self_attn.q_proj",
target_module=Linear1D_Col,
),
SubModuleReplacementDescription(
suffix="self_attn.k_proj",
target_module=Linear1D_Col,
),
SubModuleReplacementDescription(
suffix="self_attn.v_proj",
target_module=Linear1D_Col,
),
SubModuleReplacementDescription(
suffix="self_attn.o_proj",
target_module=Linear1D_Row,
),
SubModuleReplacementDescription(
suffix="mlp.gate_proj",
target_module=Linear1D_Col,
),
SubModuleReplacementDescription(
suffix="mlp.up_proj",
target_module=Linear1D_Col,
),
SubModuleReplacementDescription(
suffix="mlp.down_proj",
target_module=Linear1D_Row,
),
],
)
self.append_or_create_submodule_replacement(
description=SubModuleReplacementDescription(
suffix="embed_tokens",
target_module=VocabParallelEmbedding1D,
),
policy=policy,
target_key=MistralModel,
)
# optimization configuration
if self.shard_config.enable_fused_normalization:
self.append_or_create_submodule_replacement(
description=[
SubModuleReplacementDescription(
suffix="input_layernorm",
target_module=FusedRMSNorm,
),
SubModuleReplacementDescription(
suffix="post_attention_layernorm",
target_module=FusedRMSNorm,
),
],
policy=policy,
target_key=MistralDecoderLayer,
)
self.append_or_create_submodule_replacement(
description=SubModuleReplacementDescription(
suffix="norm",
target_module=FusedRMSNorm,
),
policy=policy,
target_key=MistralModel,
)
if self.shard_config.enable_flash_attention:
self.append_or_create_method_replacement(
description={
"forward": get_mistral_flash_attention_forward(),
},
policy=policy,
target_key=MistralAttention,
)
return policy
def postprocess(self):
return self.model
class MistralModelPolicy(MistralPolicy):
def __init__(self) -> None:
super().__init__()
def module_policy(self):
if self.pipeline_stage_manager:
warnings.warn("Mistral dosen't support pipeline parallelism now.")
return super().module_policy()
class MistralForCausalLMPolicy(MistralPolicy):
def module_policy(self):
from transformers import MistralForCausalLM
policy = super().module_policy()
if self.shard_config.enable_tensor_parallelism:
# add a new item for casual lm
new_item = {
MistralForCausalLM: ModulePolicyDescription(
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="lm_head", target_module=Linear1D_Col, kwargs=dict(gather_output=True)
)
]
)
}
if self.pipeline_stage_manager:
warnings.warn("Mistral dosen't support pipeline parallelism now.")
policy.update(new_item)
return policy
class MistralForSequenceClassificationPolicy(MistralPolicy):
def module_policy(self):
from transformers import MistralForSequenceClassification
policy = super().module_policy()
if self.shard_config.enable_tensor_parallelism:
# add a new item for sequence classification
new_item = {
MistralForSequenceClassification: ModulePolicyDescription(
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="score", target_module=Linear1D_Col, kwargs=dict(gather_output=True)
)
]
)
}
if self.pipeline_stage_manager:
warnings.warn("Mistral dosen't support pipeline parallelism now.")
policy.update(new_item)
return policy