mirror of https://github.com/hpcaitech/ColossalAI
68 lines
2.7 KiB
Python
68 lines
2.7 KiB
Python
|
from functools import partial
|
||
|
|
||
|
import pytest
|
||
|
import torch
|
||
|
import torch.multiprocessing as mp
|
||
|
|
||
|
import colossalai
|
||
|
from colossalai.logging import disable_existing_loggers, get_dist_logger
|
||
|
from colossalai.nn.parallel import ZeroDDP
|
||
|
from colossalai.testing import rerun_if_address_is_in_use
|
||
|
from colossalai.utils import free_port, get_current_device
|
||
|
from colossalai.utils.model.colo_init_context import ColoInitContext
|
||
|
from tests.components_to_test import run_fwd_bwd
|
||
|
from tests.components_to_test.registry import non_distributed_component_funcs
|
||
|
|
||
|
|
||
|
def run_gemini_fwd_bwd(rank, world_size, port, model_name: str, iter_num=2):
|
||
|
PLACEMENT_POLICY = 'cuda'
|
||
|
disable_existing_loggers()
|
||
|
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||
|
|
||
|
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||
|
model_builder, train_dataloader, _, _, criterion = get_components_func()
|
||
|
|
||
|
# build torch model
|
||
|
model_torch = model_builder(checkpoint=False).cuda()
|
||
|
|
||
|
for i, (data, label) in enumerate(train_dataloader):
|
||
|
if i >= iter_num:
|
||
|
break
|
||
|
run_fwd_bwd(model_torch, data.cuda(), label.cuda(), criterion, False, use_init_ctx=False)
|
||
|
|
||
|
# build CAI model
|
||
|
with ColoInitContext(device=get_current_device()):
|
||
|
model = model_builder(checkpoint=False)
|
||
|
|
||
|
from colossalai.gemini import ChunkManager, GeminiManager, search_chunk_configuration
|
||
|
config_dict, _ = search_chunk_configuration(model, search_range_mb=1, search_interval_byte=100)
|
||
|
chunk_manager = ChunkManager(config_dict, init_device=GeminiManager.get_default_device(PLACEMENT_POLICY))
|
||
|
gemini_manager = GeminiManager(PLACEMENT_POLICY, chunk_manager)
|
||
|
model = ZeroDDP(model, gemini_manager)
|
||
|
|
||
|
model.train()
|
||
|
|
||
|
for i, (data, label) in enumerate(train_dataloader):
|
||
|
if i >= iter_num:
|
||
|
break
|
||
|
run_fwd_bwd(model, data.cuda(), label.cuda(), criterion, False, use_init_ctx=True)
|
||
|
|
||
|
for p1, p2 in zip(model.parameters(), model_torch.parameters()):
|
||
|
torch.allclose(p1.to(torch.float), p2.to(torch.float))
|
||
|
print(f'pass test {model_name}')
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("model_name", ['bert'])
|
||
|
@rerun_if_address_is_in_use()
|
||
|
def test_gemini_train(model_name, iter_num=2):
|
||
|
run_func = partial(run_gemini_fwd_bwd, world_size=1, port=free_port(), model_name=model_name, iter_num=iter_num)
|
||
|
mp.spawn(run_func, nprocs=1)
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
# for model_name in ["bert", "resnet18", "inline_op_model"]:
|
||
|
# bert, gpt, inline_op_model, nested_model, no_leaf_module,
|
||
|
# repeated_computed_layer, resnet, simple_net
|
||
|
for model_name in ["nested_model", "no_leaf_module"]:
|
||
|
test_gemini_train(model_name=model_name, iter_num=4)
|