2024-01-17 07:22:33 +00:00
|
|
|
import copy
|
2023-07-25 16:53:57 +00:00
|
|
|
from contextlib import nullcontext
|
|
|
|
from typing import Optional
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import torch.distributed as dist
|
2024-01-17 07:22:33 +00:00
|
|
|
from torch.testing import assert_close
|
|
|
|
from torch.utils.data import Dataset
|
2023-07-25 16:53:57 +00:00
|
|
|
|
|
|
|
import colossalai
|
2024-01-22 07:19:04 +00:00
|
|
|
from colossalai.accelerator import get_accelerator
|
2023-07-25 16:53:57 +00:00
|
|
|
from colossalai.booster import Booster
|
|
|
|
from colossalai.booster.plugin import HybridParallelPlugin
|
|
|
|
from colossalai.fx import is_compatible_with_meta
|
|
|
|
from colossalai.lazy.lazy_init import LazyInitContext
|
|
|
|
from colossalai.nn.optimizer import HybridAdam
|
2024-01-11 08:04:45 +00:00
|
|
|
from colossalai.testing import clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn
|
2024-01-22 07:19:04 +00:00
|
|
|
from colossalai.utils import set_seed
|
2023-07-25 16:53:57 +00:00
|
|
|
from tests.kit.model_zoo import model_zoo
|
|
|
|
|
|
|
|
|
2024-01-17 07:22:33 +00:00
|
|
|
class RandomDataset(Dataset):
|
|
|
|
def __init__(self, num_samples: int = 100, max_length: int = 512, vocab_size: int = 32000):
|
|
|
|
self.num_samples = num_samples
|
|
|
|
self.max_length = max_length
|
|
|
|
set_seed(42)
|
2024-01-22 07:19:04 +00:00
|
|
|
self.input_ids = torch.randint(
|
|
|
|
0, vocab_size, (num_samples, max_length), device=get_accelerator().get_current_device()
|
|
|
|
)
|
2024-01-17 07:22:33 +00:00
|
|
|
self.attention_mask = torch.ones_like(self.input_ids)
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
return self.num_samples
|
|
|
|
|
|
|
|
def __getitem__(self, idx):
|
|
|
|
return {
|
|
|
|
"input_ids": self.input_ids[idx],
|
|
|
|
"attention_mask": self.attention_mask[idx],
|
|
|
|
"labels": self.input_ids[idx],
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
def move_to_cuda(batch):
|
|
|
|
return {k: v.cuda() for k, v in batch.items()}
|
|
|
|
|
|
|
|
|
2024-01-11 08:04:45 +00:00
|
|
|
@clear_cache_before_run()
|
2023-07-25 16:53:57 +00:00
|
|
|
def run_fn(init_method, model_fn, data_gen_fn, output_transform_fn) -> Optional[str]:
|
|
|
|
try:
|
2023-09-19 06:20:26 +00:00
|
|
|
if init_method == "lazy":
|
2023-07-25 16:53:57 +00:00
|
|
|
ctx = LazyInitContext()
|
|
|
|
else:
|
|
|
|
ctx = nullcontext()
|
2023-09-19 06:20:26 +00:00
|
|
|
plugin = HybridParallelPlugin(tp_size=2, pp_size=2, num_microbatches=4, precision="bf16")
|
2023-07-25 16:53:57 +00:00
|
|
|
booster = Booster(plugin=plugin)
|
|
|
|
with ctx:
|
|
|
|
model = model_fn()
|
|
|
|
optimizer = HybridAdam(model.parameters(), lr=1e-3)
|
|
|
|
criterion = lambda x: x.mean()
|
|
|
|
data = data_gen_fn()
|
|
|
|
|
|
|
|
data = {
|
2023-09-19 06:20:26 +00:00
|
|
|
k: v.to("cuda").repeat(4, 1) if torch.is_tensor(v) or "Tensor" in v.__class__.__name__ else v
|
2023-07-25 16:53:57 +00:00
|
|
|
for k, v in data.items()
|
|
|
|
}
|
|
|
|
|
|
|
|
model, optimizer, criterion, _, _ = booster.boost(model, optimizer, criterion)
|
|
|
|
|
|
|
|
data_iter = iter([data])
|
|
|
|
|
|
|
|
def _criterion(outputs, inputs):
|
|
|
|
outputs = output_transform_fn(outputs)
|
|
|
|
output_key = list(outputs.keys())[0]
|
|
|
|
loss = criterion(outputs[output_key])
|
|
|
|
return loss
|
|
|
|
|
|
|
|
booster.execute_pipeline(data_iter, model, _criterion, optimizer, return_loss=True, return_outputs=False)
|
|
|
|
optimizer.step()
|
|
|
|
|
|
|
|
except Exception as e:
|
|
|
|
return repr(e)
|
|
|
|
|
|
|
|
|
2023-09-19 06:20:26 +00:00
|
|
|
@parameterize("init_method", ["none", "lazy"])
|
|
|
|
def check_3d_plugin(init_method: str = "none", early_stop: bool = True):
|
2023-07-25 16:53:57 +00:00
|
|
|
"""check gemini plugin over model zoo
|
|
|
|
|
|
|
|
Args:
|
|
|
|
early_stop (bool, optional): Whether to stop when getting the first error. Defaults to True.
|
|
|
|
"""
|
|
|
|
is_support_meta = is_compatible_with_meta()
|
2023-09-19 06:20:26 +00:00
|
|
|
if not is_support_meta and init_method == "lazy":
|
2023-07-25 16:53:57 +00:00
|
|
|
return
|
|
|
|
|
|
|
|
passed_models = []
|
2023-09-19 06:20:26 +00:00
|
|
|
failed_info = {} # (model_name, error) pair
|
2023-07-25 16:53:57 +00:00
|
|
|
|
|
|
|
# TODO(ver217): add more models
|
2023-09-19 06:20:26 +00:00
|
|
|
for name, (model_fn, data_gen_fn, output_transform_fn, _, _) in model_zoo.get_sub_registry(
|
|
|
|
"transformers_llama_for_casual_lm"
|
|
|
|
).items():
|
2023-07-25 16:53:57 +00:00
|
|
|
err = run_fn(init_method, model_fn, data_gen_fn, output_transform_fn)
|
|
|
|
|
|
|
|
if err is None:
|
|
|
|
passed_models.append(name)
|
|
|
|
else:
|
|
|
|
failed_info[name] = err
|
|
|
|
if early_stop:
|
|
|
|
break
|
|
|
|
|
|
|
|
if dist.get_rank() == 0:
|
2023-09-19 06:20:26 +00:00
|
|
|
print(f"Init method: {init_method}")
|
|
|
|
print(f"Passed models({len(passed_models)}): {passed_models}\n\n")
|
|
|
|
print(f"Failed models({len(failed_info)}): {list(failed_info.keys())}\n\n")
|
|
|
|
assert len(failed_info) == 0, "\n".join([f"{k}: {v}" for k, v in failed_info.items()])
|
2023-07-25 16:53:57 +00:00
|
|
|
|
|
|
|
|
2024-01-17 07:22:33 +00:00
|
|
|
@parameterize(
|
|
|
|
"test_args",
|
|
|
|
[
|
2024-02-02 06:40:20 +00:00
|
|
|
{
|
|
|
|
"batch_size": 8,
|
|
|
|
"num_steps": 4,
|
|
|
|
"tp": 2,
|
|
|
|
"pp": 2,
|
|
|
|
"pp_style": "1f1b",
|
|
|
|
"num_model_chunks": 1,
|
|
|
|
"num_microbatches": 4,
|
|
|
|
"zero": 1,
|
|
|
|
"precision": "fp16",
|
|
|
|
"initial_scale": 1,
|
|
|
|
"max_length": 512,
|
|
|
|
"gradient_accumulation_step": 2,
|
|
|
|
},
|
2024-01-17 07:22:33 +00:00
|
|
|
{
|
|
|
|
"batch_size": 8,
|
|
|
|
"num_steps": 4,
|
|
|
|
"tp": 2,
|
|
|
|
"pp": 2,
|
|
|
|
"pp_style": "1f1b",
|
|
|
|
"num_model_chunks": 1,
|
|
|
|
"num_microbatches": 4,
|
|
|
|
"zero": 0,
|
|
|
|
"precision": "fp16",
|
|
|
|
"initial_scale": 1,
|
|
|
|
"max_length": 512,
|
|
|
|
"gradient_accumulation_step": 2,
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"batch_size": 8,
|
|
|
|
"num_steps": 4,
|
|
|
|
"tp": 1,
|
|
|
|
"pp": 2,
|
|
|
|
"pp_style": "1f1b",
|
|
|
|
"num_model_chunks": 1,
|
|
|
|
"num_microbatches": 4,
|
|
|
|
"zero": 1,
|
|
|
|
"precision": "fp16",
|
|
|
|
"initial_scale": 1,
|
|
|
|
"max_length": 512,
|
|
|
|
"gradient_accumulation_step": 2,
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"batch_size": 1,
|
|
|
|
"num_steps": 4,
|
|
|
|
"tp": 2,
|
|
|
|
"pp": 1,
|
|
|
|
"pp_style": "1f1b",
|
|
|
|
"num_model_chunks": 1,
|
|
|
|
"num_microbatches": 1,
|
|
|
|
"zero": 2,
|
|
|
|
"precision": "fp16",
|
|
|
|
"initial_scale": 1,
|
|
|
|
"max_length": 512,
|
|
|
|
"gradient_accumulation_step": 2,
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"batch_size": 1,
|
|
|
|
"num_steps": 4,
|
|
|
|
"tp": 2,
|
|
|
|
"pp": 1,
|
|
|
|
"pp_style": "1f1b",
|
|
|
|
"num_model_chunks": 1,
|
|
|
|
"num_microbatches": 1,
|
|
|
|
"zero": 0,
|
|
|
|
"precision": "fp16",
|
|
|
|
"initial_scale": 1,
|
|
|
|
"max_length": 512,
|
|
|
|
"gradient_accumulation_step": 2,
|
|
|
|
},
|
|
|
|
],
|
|
|
|
)
|
|
|
|
def run_grad_acc_test(test_args):
|
|
|
|
model_fn, *_ = next(iter(model_zoo.get_sub_registry("transformers_gpt_lm").values()))
|
|
|
|
model = model_fn()
|
|
|
|
optimizer = HybridAdam(model.parameters())
|
|
|
|
origin_model = copy.deepcopy(model).cuda()
|
|
|
|
origin_optimizer = HybridAdam(origin_model.parameters())
|
|
|
|
|
|
|
|
plugin = HybridParallelPlugin(
|
|
|
|
tp_size=test_args["tp"],
|
|
|
|
pp_size=test_args["pp"],
|
|
|
|
pp_style=test_args["pp_style"],
|
|
|
|
zero_stage=test_args["zero"],
|
|
|
|
num_model_chunks=test_args["num_model_chunks"],
|
|
|
|
enable_fused_normalization=True,
|
|
|
|
num_microbatches=test_args["num_microbatches"],
|
|
|
|
precision=test_args["precision"],
|
|
|
|
)
|
|
|
|
booster = Booster(plugin=plugin)
|
|
|
|
|
|
|
|
dataset = RandomDataset(
|
|
|
|
num_samples=test_args["batch_size"] * test_args["num_steps"] * plugin.dp_size,
|
|
|
|
max_length=test_args["max_length"],
|
|
|
|
vocab_size=model.config.vocab_size,
|
|
|
|
)
|
|
|
|
dataloader = plugin.prepare_dataloader(dataset, batch_size=test_args["batch_size"], shuffle=True, drop_last=True)
|
|
|
|
|
|
|
|
model, optimizer, _, dataloader, _ = booster.boost(model, optimizer, dataloader=dataloader)
|
|
|
|
|
|
|
|
grad_accu_step = test_args["gradient_accumulation_step"]
|
|
|
|
for step, batch in enumerate(dataloader):
|
|
|
|
batch = move_to_cuda(batch)
|
|
|
|
# train origin model
|
|
|
|
origin_output = origin_model(**batch)
|
|
|
|
origin_loss = origin_output[0] / grad_accu_step
|
|
|
|
origin_loss.backward()
|
|
|
|
|
|
|
|
if (step + 1) % grad_accu_step != 0 and test_args["zero"] != 2:
|
|
|
|
ctx = booster.no_sync(model, optimizer)
|
|
|
|
else:
|
|
|
|
ctx = nullcontext()
|
|
|
|
|
|
|
|
with ctx:
|
|
|
|
if plugin.stage_manager is not None:
|
|
|
|
batch = iter([batch])
|
|
|
|
booster.execute_pipeline(
|
|
|
|
batch,
|
|
|
|
model,
|
|
|
|
criterion=lambda outputs, inputs: outputs[0] / grad_accu_step,
|
|
|
|
optimizer=optimizer,
|
|
|
|
return_loss=False,
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
outputs = model(**batch)
|
|
|
|
loss = outputs[0] / grad_accu_step
|
|
|
|
booster.backward(loss, optimizer)
|
|
|
|
|
|
|
|
if (step + 1) % grad_accu_step == 0:
|
|
|
|
# update origin model weight
|
|
|
|
origin_optimizer.step()
|
|
|
|
origin_optimizer.zero_grad()
|
|
|
|
|
|
|
|
# update sharded model
|
|
|
|
optimizer.step()
|
|
|
|
optimizer.zero_grad()
|
|
|
|
|
|
|
|
# tricky code here, shard the origin model inorder to check the parameters in the same stage.
|
|
|
|
origin_model, origin_optimizer, _, dataloader, _ = booster.boost(
|
|
|
|
origin_model, origin_optimizer, dataloader=dataloader
|
|
|
|
)
|
|
|
|
for p1, p2 in zip(model.unwrap().parameters(), origin_model.unwrap().parameters()):
|
2024-03-18 07:55:11 +00:00
|
|
|
assert_close(p1.to(p2.dtype), p2, atol=1e-2, rtol=1e-2)
|
2024-01-17 07:22:33 +00:00
|
|
|
|
|
|
|
|
2023-07-25 16:53:57 +00:00
|
|
|
def run_dist(rank, world_size, port, early_stop: bool = True):
|
|
|
|
# init dist env
|
2023-09-19 06:20:26 +00:00
|
|
|
colossalai.launch(config=dict(), rank=rank, world_size=world_size, port=port, host="localhost")
|
2023-07-25 16:53:57 +00:00
|
|
|
check_3d_plugin(early_stop=early_stop)
|
2024-01-17 07:22:33 +00:00
|
|
|
run_grad_acc_test()
|
2023-07-25 16:53:57 +00:00
|
|
|
|
|
|
|
|
|
|
|
@rerun_if_address_is_in_use()
|
|
|
|
def test_gemini_plugin(early_stop: bool = True):
|
|
|
|
spawn(run_dist, 4, early_stop=early_stop)
|
|
|
|
|
|
|
|
|
2023-09-19 06:20:26 +00:00
|
|
|
if __name__ == "__main__":
|
2024-03-04 08:18:13 +00:00
|
|
|
test_gemini_plugin(early_stop=False)
|