ColossalAI/applications/ColossalMoE/train.py

296 lines
11 KiB
Python
Raw Normal View History

2023-12-14 09:52:05 +00:00
import argparse
import torch
import torch.distributed as dist
from colossal_moe.models.mixtral_checkpoint import MixtralMoEHybridParallelCheckpointIO
2023-12-14 09:52:05 +00:00
from colossal_moe.models.mixtral_policy import MixtralForCausalLMPolicy
from colossal_moe.utils import load_checkpoint, move_to_cuda, save_checkpoint
2023-12-14 09:52:05 +00:00
from torch.utils.data import Dataset
from tqdm import tqdm
from transformers import AutoTokenizer
from transformers.models.mixtral import MixtralForCausalLM
2023-12-14 09:52:05 +00:00
import colossalai
from colossalai.booster import Booster
from colossalai.booster.plugin.moe_hybrid_parallel_plugin import MoeHybridParallelPlugin
from colossalai.cluster import DistCoordinator
from colossalai.nn.lr_scheduler import CosineAnnealingWarmupLR
from colossalai.nn.optimizer import HybridAdam
from colossalai.utils import get_current_device
@torch.no_grad()
def get_global_loss(loss, booster):
global_loss = loss.clone().detach()
dist.all_reduce(tensor=global_loss, op=dist.ReduceOp.SUM, group=booster.plugin.dp_group)
global_loss.div_(booster.plugin.dp_size)
return global_loss
class RandomDataset(Dataset):
def __init__(self, num_samples: int = 1000, max_length: int = 2048, vocab_size: int = 100, tokenizer=None):
self.num_samples = num_samples
self.max_length = max_length
self.input_ids = torch.randint(0, vocab_size, (num_samples, max_length), device=get_current_device())
self.attention_mask = torch.ones_like(self.input_ids)
def __len__(self):
return self.num_samples
def __getitem__(self, idx):
return {
"input_ids": self.input_ids[idx],
"attention_mask": self.attention_mask[idx],
"labels": self.input_ids[idx],
}
def parse_args():
# basic settings
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_name",
type=str,
default="mistralai/Mixtral-8x7B-v0.1",
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument("--load_checkpoint", type=str, default=None, help="Load checkpoint")
parser.add_argument(
"--plugin",
type=str,
default="hybrid",
choices=["hybrid"],
help="Parallel methods.",
)
parser.add_argument(
"--output_path",
type=str,
default="./outputs",
help="The path of your saved model after finetuning.",
)
parser.add_argument("--num_epoch", type=int, default=1, help="Number of epochs.")
parser.add_argument(
"--batch_size",
type=int,
default=1,
help="Batch size (per dp group) for the training dataloader.",
)
parser.add_argument(
"--save_interval",
type=int,
default=1000,
help=" The interval (steps) of saving checkpoints.",
)
parser.add_argument(
"--precision",
type=str,
default="bf16",
choices=["fp32", "bf16", "fp16"],
help="The mixed precision training.",
)
parser.add_argument("--max_length", type=int, default=2048, help="Max sequence length.")
parser.add_argument("--seed", type=int, default=42, help="A seed for reproducible training.")
# optim
parser.add_argument("--lr", type=float, default=1e-5, help="Learning rate.")
parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.")
# lr scheduler
parser.add_argument("--num_epochs", type=int, default=1, help="Number of training epochs")
parser.add_argument("--warmup_steps", type=int, default=None, help="Warmup steps")
# zero stage for all plugins
parser.add_argument("--zero_stage", type=int, default=2, help="zero stage.")
# hybrid plugin
parser.add_argument("--pp_size", type=int, default=2, help="pp size for hybrid plugin")
parser.add_argument("--dp_size", type=int, default=1, help="dp size for hybrid plugin")
parser.add_argument("--ep_size", type=int, default=2, help="ep size for hybrid plugin")
parser.add_argument("--microbatch_size", type=int, default=1, help="Microbatch size in pipeline for hybrid plugin")
# kernel
parser.add_argument(
"--use_kernel",
action="store_true",
help="Use kernel optim. Need to install flash attention and triton to enable all kernel optimizations. Skip if not installed.",
)
parser.add_argument(
"--use_layernorm_kernel",
action="store_true",
help="Use layernorm kernel. Need to install apex. Raise error if not installed.",
)
# load balance
parser.add_argument(
"--load_balance", action="store_true", help="Expert load balance. Defaults to False. Recommend to enable."
)
parser.add_argument("--load_balance_interval", type=int, default=1000, help="Expert load balance interval.")
# communicate overlap
parser.add_argument(
"--comm_overlap",
action="store_true",
help="Use communication overlap for MoE. Recommended to enable for muiti-node training.",
)
# hierarchical all-to-all
parser.add_argument(
"--hierarchical_alltoall",
action="store_true",
help="Use hierarchical all-to-all for MoE. Recommended to enable for muiti-node training.",
)
args = parser.parse_args()
return args
def main():
args = parse_args()
# Launch ColossalAI
colossalai.launch_from_torch(config={}, seed=args.seed)
coordinator = DistCoordinator()
# Set plugin
if args.plugin == "hybrid":
plugin = MoeHybridParallelPlugin(
tp_size=1,
2023-12-14 09:52:05 +00:00
pp_size=args.pp_size,
ep_size=args.ep_size,
2023-12-14 09:52:05 +00:00
microbatch_size=args.microbatch_size,
custom_policy=MixtralForCausalLMPolicy(),
enable_fused_normalization=args.use_layernorm_kernel,
enable_jit_fused=args.use_kernel,
precision=args.precision,
zero_stage=args.zero_stage,
checkpoint_io=MixtralMoEHybridParallelCheckpointIO,
2023-12-14 09:52:05 +00:00
)
2023-12-14 09:52:05 +00:00
else:
raise ValueError(f"Invalid plugin {args.plugin}")
coordinator.print_on_master(f"Set plugin as {plugin.__class__.__name__}")
# Build Mixtral model
model = MixtralForCausalLM.from_pretrained(args.model_name)
coordinator.print_on_master(f"Finish init model")
2023-12-14 09:52:05 +00:00
# Enable gradient checkpointing
model.gradient_checkpointing_enable()
# Prepare tokenizer and dataloader
tokenizer = AutoTokenizer.from_pretrained(args.model_name)
dataset = RandomDataset(num_samples=100, tokenizer=tokenizer)
collate_fn = None
dataloader = plugin.prepare_dataloader(
dataset, batch_size=args.batch_size, shuffle=True, drop_last=True, collate_fn=collate_fn
)
# Set optimizer
optimizer = HybridAdam(
model_params=model.parameters(),
lr=args.lr,
betas=(0.9, 0.95),
weight_decay=args.weight_decay,
adamw_mode=True,
)
# Set lr scheduler
lr_scheduler = CosineAnnealingWarmupLR(
optimizer=optimizer,
total_steps=args.num_epochs * len(dataloader),
warmup_steps=args.warmup_steps
if args.warmup_steps is not None
else int(args.num_epochs * len(dataloader) * 0.025),
eta_min=0.1 * args.lr,
)
# Set booster
booster = Booster(plugin=plugin)
2023-12-14 09:52:05 +00:00
model, optimizer, _, dataloader, lr_scheduler = booster.boost(
model=model,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
dataloader=dataloader,
)
use_pipeline = isinstance(booster.plugin, MoeHybridParallelPlugin) and booster.plugin.pp_size > 1
is_pp_last_stage = use_pipeline and booster.plugin.stage_manager.is_last_stage()
coordinator.print_on_master(f"Finish init booster")
# Load ckpt
if args.load_checkpoint is not None:
2023-12-14 09:52:05 +00:00
load_checkpoint(args.load_checkpoint, booster, model, optimizer, lr_scheduler)
coordinator.print_on_master(f"Finish load optimizer")
# Start finetuning
coordinator.print_on_master(f"Start finetuning")
for epoch in range(args.num_epoch):
model.train()
train_dataloader_iter = iter(dataloader)
total_len = len(train_dataloader_iter)
with tqdm(
range(total_len),
desc=f"Epoch [{epoch + 1}/{args.num_epoch}]",
disable=not coordinator.is_master() if use_pipeline == False else not is_pp_last_stage,
) as pbar:
for step in pbar:
if use_pipeline:
# Forward pass
outputs = booster.execute_pipeline(
train_dataloader_iter,
model,
lambda x, y: x.loss,
optimizer,
return_loss=True,
return_outputs=True,
)
# Backward and optimize
if is_pp_last_stage:
loss = outputs["loss"]
global_loss = get_global_loss(loss, booster)
if coordinator._local_rank == "0":
pbar.set_postfix({"Loss": global_loss.item()})
else:
# Forward pass
data = next(train_dataloader_iter)
data = move_to_cuda(data, torch.cuda.current_device())
outputs = model(**data)
loss = outputs["loss"]
# Backward
booster.backward(loss, optimizer)
pbar.set_postfix({"loss": loss.item()})
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# Apply load balance
# if (
# args.load_balance
# and args.load_balance_interval > 0
# and (step + 1) % args.load_balance_interval == 0
# ):
# coordinator.print_on_master(f"Apply load balance")
# apply_load_balance(model, optimizer)
2023-12-14 09:52:05 +00:00
# save ckeckpoint
if (step + 1) % args.save_interval == 0:
coordinator.print_on_master(f"Saving model checkpoint to {args.output_path}")
save_checkpoint(
args.output_path,
booster,
model,
optimizer,
lr_scheduler,
epoch,
step,
args.batch_size,
coordinator,
)
# save checkpoint at the end of each epochs
booster.save_model(model, args.output_path, shard=True, size_per_shard=5120)
coordinator.print_on_master(f"Saving model checkpoint to {args.output_path}")
# Finish training
coordinator.print_on_master(f"Finish training")
if __name__ == "__main__":
main()