2023-12-14 09:52:05 +00:00
|
|
|
import argparse
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import torch.distributed as dist
|
2024-01-25 07:48:46 +00:00
|
|
|
from colossal_moe.models.mixtral_checkpoint import MixtralMoEHybridParallelCheckpointIO
|
2023-12-14 09:52:05 +00:00
|
|
|
from colossal_moe.models.mixtral_policy import MixtralForCausalLMPolicy
|
2024-01-25 07:48:46 +00:00
|
|
|
from colossal_moe.utils import load_checkpoint, move_to_cuda, save_checkpoint
|
2023-12-14 09:52:05 +00:00
|
|
|
from torch.utils.data import Dataset
|
|
|
|
from tqdm import tqdm
|
|
|
|
from transformers import AutoTokenizer
|
2024-01-25 07:48:46 +00:00
|
|
|
from transformers.models.mixtral import MixtralForCausalLM
|
2023-12-14 09:52:05 +00:00
|
|
|
|
|
|
|
import colossalai
|
|
|
|
from colossalai.booster import Booster
|
|
|
|
from colossalai.booster.plugin.moe_hybrid_parallel_plugin import MoeHybridParallelPlugin
|
|
|
|
from colossalai.cluster import DistCoordinator
|
|
|
|
from colossalai.nn.lr_scheduler import CosineAnnealingWarmupLR
|
|
|
|
from colossalai.nn.optimizer import HybridAdam
|
|
|
|
from colossalai.utils import get_current_device
|
|
|
|
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
def get_global_loss(loss, booster):
|
|
|
|
global_loss = loss.clone().detach()
|
|
|
|
dist.all_reduce(tensor=global_loss, op=dist.ReduceOp.SUM, group=booster.plugin.dp_group)
|
|
|
|
global_loss.div_(booster.plugin.dp_size)
|
|
|
|
return global_loss
|
|
|
|
|
|
|
|
|
|
|
|
class RandomDataset(Dataset):
|
|
|
|
def __init__(self, num_samples: int = 1000, max_length: int = 2048, vocab_size: int = 100, tokenizer=None):
|
|
|
|
self.num_samples = num_samples
|
|
|
|
self.max_length = max_length
|
|
|
|
self.input_ids = torch.randint(0, vocab_size, (num_samples, max_length), device=get_current_device())
|
|
|
|
self.attention_mask = torch.ones_like(self.input_ids)
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
return self.num_samples
|
|
|
|
|
|
|
|
def __getitem__(self, idx):
|
|
|
|
return {
|
|
|
|
"input_ids": self.input_ids[idx],
|
|
|
|
"attention_mask": self.attention_mask[idx],
|
|
|
|
"labels": self.input_ids[idx],
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
def parse_args():
|
|
|
|
# basic settings
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument(
|
|
|
|
"--model_name",
|
|
|
|
type=str,
|
|
|
|
default="mistralai/Mixtral-8x7B-v0.1",
|
|
|
|
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
|
|
|
)
|
|
|
|
parser.add_argument("--load_checkpoint", type=str, default=None, help="Load checkpoint")
|
|
|
|
parser.add_argument(
|
|
|
|
"--plugin",
|
|
|
|
type=str,
|
|
|
|
default="hybrid",
|
|
|
|
choices=["hybrid"],
|
|
|
|
help="Parallel methods.",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--output_path",
|
|
|
|
type=str,
|
|
|
|
default="./outputs",
|
|
|
|
help="The path of your saved model after finetuning.",
|
|
|
|
)
|
|
|
|
parser.add_argument("--num_epoch", type=int, default=1, help="Number of epochs.")
|
|
|
|
parser.add_argument(
|
|
|
|
"--batch_size",
|
|
|
|
type=int,
|
|
|
|
default=1,
|
|
|
|
help="Batch size (per dp group) for the training dataloader.",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--save_interval",
|
|
|
|
type=int,
|
|
|
|
default=1000,
|
|
|
|
help=" The interval (steps) of saving checkpoints.",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--precision",
|
|
|
|
type=str,
|
|
|
|
default="bf16",
|
|
|
|
choices=["fp32", "bf16", "fp16"],
|
|
|
|
help="The mixed precision training.",
|
|
|
|
)
|
|
|
|
parser.add_argument("--max_length", type=int, default=2048, help="Max sequence length.")
|
|
|
|
parser.add_argument("--seed", type=int, default=42, help="A seed for reproducible training.")
|
|
|
|
|
|
|
|
# optim
|
|
|
|
parser.add_argument("--lr", type=float, default=1e-5, help="Learning rate.")
|
|
|
|
parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.")
|
|
|
|
|
|
|
|
# lr scheduler
|
|
|
|
parser.add_argument("--num_epochs", type=int, default=1, help="Number of training epochs")
|
|
|
|
parser.add_argument("--warmup_steps", type=int, default=None, help="Warmup steps")
|
|
|
|
|
|
|
|
# zero stage for all plugins
|
|
|
|
parser.add_argument("--zero_stage", type=int, default=2, help="zero stage.")
|
|
|
|
# hybrid plugin
|
|
|
|
parser.add_argument("--pp_size", type=int, default=2, help="pp size for hybrid plugin")
|
|
|
|
parser.add_argument("--dp_size", type=int, default=1, help="dp size for hybrid plugin")
|
|
|
|
parser.add_argument("--ep_size", type=int, default=2, help="ep size for hybrid plugin")
|
|
|
|
parser.add_argument("--microbatch_size", type=int, default=1, help="Microbatch size in pipeline for hybrid plugin")
|
|
|
|
|
|
|
|
# kernel
|
|
|
|
parser.add_argument(
|
|
|
|
"--use_kernel",
|
|
|
|
action="store_true",
|
|
|
|
help="Use kernel optim. Need to install flash attention and triton to enable all kernel optimizations. Skip if not installed.",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--use_layernorm_kernel",
|
|
|
|
action="store_true",
|
|
|
|
help="Use layernorm kernel. Need to install apex. Raise error if not installed.",
|
|
|
|
)
|
|
|
|
|
|
|
|
# load balance
|
|
|
|
parser.add_argument(
|
|
|
|
"--load_balance", action="store_true", help="Expert load balance. Defaults to False. Recommend to enable."
|
|
|
|
)
|
|
|
|
parser.add_argument("--load_balance_interval", type=int, default=1000, help="Expert load balance interval.")
|
|
|
|
# communicate overlap
|
|
|
|
parser.add_argument(
|
|
|
|
"--comm_overlap",
|
|
|
|
action="store_true",
|
|
|
|
help="Use communication overlap for MoE. Recommended to enable for muiti-node training.",
|
|
|
|
)
|
|
|
|
# hierarchical all-to-all
|
|
|
|
parser.add_argument(
|
|
|
|
"--hierarchical_alltoall",
|
|
|
|
action="store_true",
|
|
|
|
help="Use hierarchical all-to-all for MoE. Recommended to enable for muiti-node training.",
|
|
|
|
)
|
|
|
|
|
|
|
|
args = parser.parse_args()
|
|
|
|
return args
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
args = parse_args()
|
|
|
|
|
|
|
|
# Launch ColossalAI
|
|
|
|
colossalai.launch_from_torch(config={}, seed=args.seed)
|
|
|
|
coordinator = DistCoordinator()
|
|
|
|
|
|
|
|
# Set plugin
|
|
|
|
if args.plugin == "hybrid":
|
|
|
|
plugin = MoeHybridParallelPlugin(
|
2024-01-25 07:48:46 +00:00
|
|
|
tp_size=1,
|
2023-12-14 09:52:05 +00:00
|
|
|
pp_size=args.pp_size,
|
2024-01-25 07:48:46 +00:00
|
|
|
ep_size=args.ep_size,
|
2023-12-14 09:52:05 +00:00
|
|
|
microbatch_size=args.microbatch_size,
|
2024-01-25 07:48:46 +00:00
|
|
|
custom_policy=MixtralForCausalLMPolicy(),
|
|
|
|
enable_fused_normalization=args.use_layernorm_kernel,
|
|
|
|
enable_jit_fused=args.use_kernel,
|
|
|
|
precision=args.precision,
|
|
|
|
zero_stage=args.zero_stage,
|
|
|
|
checkpoint_io=MixtralMoEHybridParallelCheckpointIO,
|
2023-12-14 09:52:05 +00:00
|
|
|
)
|
2024-01-25 07:48:46 +00:00
|
|
|
|
2023-12-14 09:52:05 +00:00
|
|
|
else:
|
|
|
|
raise ValueError(f"Invalid plugin {args.plugin}")
|
|
|
|
coordinator.print_on_master(f"Set plugin as {plugin.__class__.__name__}")
|
|
|
|
|
|
|
|
# Build Mixtral model
|
2024-01-25 07:48:46 +00:00
|
|
|
model = MixtralForCausalLM.from_pretrained(args.model_name)
|
|
|
|
coordinator.print_on_master(f"Finish init model")
|
2023-12-14 09:52:05 +00:00
|
|
|
|
|
|
|
# Enable gradient checkpointing
|
|
|
|
model.gradient_checkpointing_enable()
|
|
|
|
|
|
|
|
# Prepare tokenizer and dataloader
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(args.model_name)
|
|
|
|
dataset = RandomDataset(num_samples=100, tokenizer=tokenizer)
|
|
|
|
collate_fn = None
|
|
|
|
dataloader = plugin.prepare_dataloader(
|
|
|
|
dataset, batch_size=args.batch_size, shuffle=True, drop_last=True, collate_fn=collate_fn
|
|
|
|
)
|
|
|
|
|
|
|
|
# Set optimizer
|
|
|
|
optimizer = HybridAdam(
|
|
|
|
model_params=model.parameters(),
|
|
|
|
lr=args.lr,
|
|
|
|
betas=(0.9, 0.95),
|
|
|
|
weight_decay=args.weight_decay,
|
|
|
|
adamw_mode=True,
|
|
|
|
)
|
|
|
|
|
|
|
|
# Set lr scheduler
|
|
|
|
lr_scheduler = CosineAnnealingWarmupLR(
|
|
|
|
optimizer=optimizer,
|
|
|
|
total_steps=args.num_epochs * len(dataloader),
|
|
|
|
warmup_steps=args.warmup_steps
|
|
|
|
if args.warmup_steps is not None
|
|
|
|
else int(args.num_epochs * len(dataloader) * 0.025),
|
|
|
|
eta_min=0.1 * args.lr,
|
|
|
|
)
|
|
|
|
|
|
|
|
# Set booster
|
2024-01-25 07:48:46 +00:00
|
|
|
booster = Booster(plugin=plugin)
|
2023-12-14 09:52:05 +00:00
|
|
|
model, optimizer, _, dataloader, lr_scheduler = booster.boost(
|
|
|
|
model=model,
|
|
|
|
optimizer=optimizer,
|
|
|
|
lr_scheduler=lr_scheduler,
|
|
|
|
dataloader=dataloader,
|
|
|
|
)
|
|
|
|
use_pipeline = isinstance(booster.plugin, MoeHybridParallelPlugin) and booster.plugin.pp_size > 1
|
|
|
|
is_pp_last_stage = use_pipeline and booster.plugin.stage_manager.is_last_stage()
|
|
|
|
coordinator.print_on_master(f"Finish init booster")
|
|
|
|
|
|
|
|
# Load ckpt
|
2024-01-25 07:48:46 +00:00
|
|
|
if args.load_checkpoint is not None:
|
2023-12-14 09:52:05 +00:00
|
|
|
load_checkpoint(args.load_checkpoint, booster, model, optimizer, lr_scheduler)
|
|
|
|
coordinator.print_on_master(f"Finish load optimizer")
|
|
|
|
|
|
|
|
# Start finetuning
|
|
|
|
coordinator.print_on_master(f"Start finetuning")
|
|
|
|
for epoch in range(args.num_epoch):
|
|
|
|
model.train()
|
|
|
|
train_dataloader_iter = iter(dataloader)
|
|
|
|
total_len = len(train_dataloader_iter)
|
|
|
|
with tqdm(
|
|
|
|
range(total_len),
|
|
|
|
desc=f"Epoch [{epoch + 1}/{args.num_epoch}]",
|
|
|
|
disable=not coordinator.is_master() if use_pipeline == False else not is_pp_last_stage,
|
|
|
|
) as pbar:
|
|
|
|
for step in pbar:
|
|
|
|
if use_pipeline:
|
|
|
|
# Forward pass
|
|
|
|
outputs = booster.execute_pipeline(
|
|
|
|
train_dataloader_iter,
|
|
|
|
model,
|
|
|
|
lambda x, y: x.loss,
|
|
|
|
optimizer,
|
|
|
|
return_loss=True,
|
|
|
|
return_outputs=True,
|
|
|
|
)
|
|
|
|
# Backward and optimize
|
|
|
|
if is_pp_last_stage:
|
|
|
|
loss = outputs["loss"]
|
|
|
|
global_loss = get_global_loss(loss, booster)
|
|
|
|
if coordinator._local_rank == "0":
|
|
|
|
pbar.set_postfix({"Loss": global_loss.item()})
|
|
|
|
else:
|
|
|
|
# Forward pass
|
|
|
|
data = next(train_dataloader_iter)
|
|
|
|
data = move_to_cuda(data, torch.cuda.current_device())
|
|
|
|
outputs = model(**data)
|
|
|
|
loss = outputs["loss"]
|
|
|
|
# Backward
|
|
|
|
booster.backward(loss, optimizer)
|
|
|
|
pbar.set_postfix({"loss": loss.item()})
|
|
|
|
|
|
|
|
optimizer.step()
|
|
|
|
lr_scheduler.step()
|
|
|
|
optimizer.zero_grad()
|
|
|
|
|
|
|
|
# Apply load balance
|
2024-01-25 07:48:46 +00:00
|
|
|
# if (
|
|
|
|
# args.load_balance
|
|
|
|
# and args.load_balance_interval > 0
|
|
|
|
# and (step + 1) % args.load_balance_interval == 0
|
|
|
|
# ):
|
|
|
|
# coordinator.print_on_master(f"Apply load balance")
|
|
|
|
# apply_load_balance(model, optimizer)
|
2023-12-14 09:52:05 +00:00
|
|
|
# save ckeckpoint
|
|
|
|
if (step + 1) % args.save_interval == 0:
|
|
|
|
coordinator.print_on_master(f"Saving model checkpoint to {args.output_path}")
|
|
|
|
save_checkpoint(
|
|
|
|
args.output_path,
|
|
|
|
booster,
|
|
|
|
model,
|
|
|
|
optimizer,
|
|
|
|
lr_scheduler,
|
|
|
|
epoch,
|
|
|
|
step,
|
|
|
|
args.batch_size,
|
|
|
|
coordinator,
|
|
|
|
)
|
|
|
|
|
|
|
|
# save checkpoint at the end of each epochs
|
|
|
|
booster.save_model(model, args.output_path, shard=True, size_per_shard=5120)
|
|
|
|
coordinator.print_on_master(f"Saving model checkpoint to {args.output_path}")
|
|
|
|
|
|
|
|
# Finish training
|
|
|
|
coordinator.print_on_master(f"Finish training")
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
main()
|