ColossalAI/tests/test_moe/test_moe_zero_init.py

103 lines
3.9 KiB
Python
Raw Normal View History

from functools import partial
import colossalai
import pytest
import torch
import torch.multiprocessing as mp
import torch.nn as nn
from colossalai.logging import get_dist_logger
from colossalai.testing import parameterize
from colossalai.utils import free_port
from colossalai.context import MOE_CONTEXT
from colossalai.nn.layer import MoeModule
from colossalai.zero.init_ctx import ZeroInitContext
from colossalai.zero.shard_utils import (BucketTensorShardStrategy, TensorShardStrategy)
from colossalai.testing import rerun_on_exception
from colossalai.utils import get_current_device
from tests.test_zero_data_parallel.common import CONFIG
class MoeModel(nn.Module):
def __init__(self):
super().__init__()
self.proj1 = nn.Linear(4, 16)
expert_cls = nn.Linear
expert_args_dict = dict(in_features=16, out_features=16)
self.moe = MoeModule(dim_model=16, num_experts=8, use_residual=True, expert_cls=expert_cls, **expert_args_dict)
self.proj2 = nn.Linear(16, 4)
def forward(self, x):
x = self.proj1(x)
x = self.moe(x)
x = self.proj2(x)
return x
@parameterize("init_device_type", ['cpu', 'cuda'])
@parameterize("shard_strategy_class", [TensorShardStrategy, BucketTensorShardStrategy])
def run_moe_zero_init(init_device_type, shard_strategy_class):
logger = get_dist_logger("test_moe_zero_init")
if init_device_type == 'cuda':
init_device = torch.device(f"cuda:{get_current_device()}")
elif init_device_type == 'cpu':
init_device = torch.device("cpu")
else:
raise NotImplementedError("Unknown device found.")
model_numel_tensor = torch.zeros(1, dtype=torch.int)
with ZeroInitContext(target_device=init_device,
shard_strategy=shard_strategy_class(),
shard_param=True,
model_numel_tensor=model_numel_tensor,
rm_torch_payload_on_the_fly=False):
model = MoeModel()
for name, param in model.named_parameters():
assert hasattr(param, 'colo_attr')
# the weights in the gate should be fp32
if 'gate' in name:
assert param.colo_attr.sharded_data_tensor.dtype == torch.float32
else:
assert param.colo_attr.sharded_data_tensor.dtype == torch.half
# the parameters in moe experts and its gate should not be sharded
if ('experts' in name) or ('gate' in name) or ('residual_combine' in name):
assert not param.colo_attr.sharded_data_tensor.is_sharded
else:
assert param.colo_attr.sharded_data_tensor.is_sharded
# the parameters in moe experts is not replicated
if 'experts' in name:
assert not param.is_replicated
else:
assert param.is_replicated
if param.colo_attr.param_is_sharded:
assert param.colo_attr.sharded_data_tensor.payload.device.type == init_device.type, \
f'{param.colo_attr.sharded_data_tensor.payload.device.type} vs. {init_device.type}'
else:
assert param.colo_attr.sharded_data_tensor.payload.device.type == 'cuda'
def _run_dist(rank, world_size, port):
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
MOE_CONTEXT.setup(seed=42)
run_moe_zero_init()
@pytest.mark.dist
@pytest.mark.parametrize("world_size", [2, 4])
@pytest.mark.skip("Under development")
@rerun_on_exception(exception_type=mp.ProcessRaisedException, pattern=".*Address already in use.*")
def test_moe_zero_init(world_size):
run_func = partial(_run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_moe_zero_init(world_size=2)