ColossalAI/colossalai/utils/profiler/pcie_profiler.py

149 lines
4.9 KiB
Python
Raw Normal View History

from pathlib import Path
from torch.autograd.profiler import profile
from .prof_utils import BaseProfiler, _format_time, _format_memory, _format_bandwidth
from typing import List
def _get_size(dtype: str):
if dtype == "fp16":
return 2
elif dtype == "fp32":
return 4
else:
raise NotImplementedError
def _get_numel(my_list: List[int]) -> int:
from functools import reduce
from operator import mul
return reduce(mul, my_list)
def _reduce_location(locations: List[str]) -> str:
ret = []
for lo in locations:
ret.append(lo)
ret.append("\n")
ret = ret[:-1]
return ''.join(ret)
class PcieEvent(object):
"""Pcie Event.
"""
def __init__(self, count: int = 0, pcie_vol: int = 0, cuda_time: int = 0):
self.count = count
self.pcie_vol = pcie_vol
self.cuda_time = cuda_time
def add(self, rhs):
self.count += rhs.count
self.pcie_vol += rhs.pcie_vol
self.cuda_time += rhs.cuda_time
class PcieProfiler(BaseProfiler):
"""Pcie profiler. Records all data transmission between CPU and GPU.
TODO: Merge pcie profiler into communication profiler
"""
def __init__(self, dtype: str = "fp32", depth: int = 1):
super().__init__(profiler_name="Pcie", priority=10)
self.depth = depth
self.data_size = _get_size(dtype)
self.h2d_count = 0
self.h2d_time = 0
self.d2h_count = 0
self.d2h_time = 0
self.ops_record = dict()
self.profiler = None
def reset(self):
self.h2d_count = 0
self.h2d_time = 0
self.d2h_count = 0
self.d2h_time = 0
self.ops_record = dict()
self.profiler = None
def enable(self):
self.profiler = profile(enabled=True,
use_cuda=True,
use_cpu=True,
use_kineto=True,
record_shapes=True,
with_stack=True)
self.profiler.__enter__()
def disable(self):
self.profiler.__exit__(None, None, None)
if self.profiler.enabled:
events = self.profiler.function_events
for event in events:
if event.name == "aten::copy_":
t_shape = event.input_shapes[0]
if len(t_shape) == 0 or event.cuda_time_total == 0 or len(event.stack) == 0:
continue
current_comm_event = PcieEvent(1, self.data_size * _get_numel(t_shape), event.cuda_time_total)
code_location = _reduce_location(event.stack[:self.depth])
if code_location in self.ops_record:
self.ops_record[code_location].add(current_comm_event)
else:
self.ops_record[code_location] = current_comm_event
elif 'Memcpy HtoD' in event.name:
self.h2d_count += 1
self.h2d_time += event.cuda_time_total
elif 'Memcpy DtoH' in event.name:
self.d2h_count += 1
self.d2h_time += event.cuda_time_total
self.profiler = None
def to_tensorboard(self, writer):
writer.add_text(tag="Data Transmission", text_string=self.result_str("\n\n"))
def to_file(self, filename: Path):
with open(filename, "w") as f:
f.write(self.result_str())
def show(self):
print(self.result_str())
def result_str(self, sep: str = "\n"):
res = []
def append(s: str = None):
if s is not None:
res.append(s)
res.append(sep)
append("Pcie profiling result:")
append("time of data transmission (CPU -> GPU): {}".format(_format_time(self.h2d_time)))
append("number of transmission (CPU -> GPU): {}".format(self.h2d_count))
append("time of data transmission (GPU -> CPU): {}".format(_format_time(self.d2h_time)))
append("number of transmission (GPU -> CPU): {}".format(self.d2h_count))
append("Possible data transmission events in PCIE:")
seperation = '-' * 62
row_format = '{:^10}' + '{:^12}' + '{:^16}' + '{:^12}' * 2
append(seperation)
append(row_format.format('Location', 'GPU time', 'Trans volume', 'Bandwidth', 'Num of calls'))
append(seperation)
show_list = sorted(self.ops_record.items(), key=lambda kv: -kv[1].cuda_time)
for location, event in show_list:
append(location)
append(
row_format.format('', _format_time(event.cuda_time), _format_memory(event.pcie_vol),
_format_bandwidth(event.pcie_vol, event.cuda_time), event.count))
append()
return ''.join(res)