ColossalAI/tests/test_shardformer/test_model/test_shard_blip2.py

121 lines
3.1 KiB
Python
Raw Normal View History

import pytest
import torch
import colossalai
from colossalai.logging import disable_existing_loggers
from colossalai.testing import (
assert_hf_output_close,
clear_cache_before_run,
parameterize,
rerun_if_address_is_in_use,
spawn,
)
from tests.kit.model_zoo import model_zoo
from tests.test_shardformer.test_model._utils import build_model, check_grad, run_forward
def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn):
# check forward
org_output, org_loss, shard_output, shard_loss = run_forward(
org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn
)
assert_hf_output_close(org_output, shard_output, ignore_keys=["past_key_values"])
# do backward
org_loss.backward()
shard_loss.backward()
assert torch.allclose(
org_loss, shard_loss, atol=1e-5
), f"shard model loss is not equal to orgin model loss\n{org_loss}\n{shard_loss}"
# check grad
blip2 = org_model
sharded_blip2 = sharded_model
# check grad
col_layer_for_check = [
"vision_model.encoder.layers[0].self_attn.qkv",
"qformer.encoder.layer[0].attention.attention.query",
"language_model.model.decoder.layers[0].self_attn.k_proj",
]
row_layer_for_check = [
"vision_model.encoder.layers[0].self_attn.projection",
"qformer.encoder.layer[0].attention.output.dense",
"language_model.model.decoder.layers[0].self_attn.out_proj",
]
check_grad(
blip2,
sharded_blip2,
col_layer_for_check,
atol=1e-6,
rtol=1e-5,
dim=0,
verbose=False,
)
check_grad(
blip2,
sharded_blip2,
row_layer_for_check,
atol=1e-6,
rtol=1e-5,
dim=1,
verbose=False,
)
@parameterize("enable_fused_normalization", [True, False])
@parameterize("enable_tensor_parallelism", [True, False])
@parameterize("enable_flash_attention", [True, False])
@parameterize("enable_jit_fused", [True, False])
def run_blip2_test(
enable_fused_normalization,
enable_tensor_parallelism,
enable_flash_attention,
enable_jit_fused,
):
sub_model_zoo = model_zoo.get_sub_registry("transformers_blip2")
for name, (
model_fn,
data_gen_fn,
output_transform_fn,
loss_fn,
_,
) in sub_model_zoo.items():
org_model, sharded_model = build_model(
model_fn,
enable_fused_normalization,
enable_tensor_parallelism,
enable_flash_attention,
enable_jit_fused,
dtype=torch.float,
)
check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn)
torch.cuda.empty_cache()
def check_blip2(rank, world_size, port):
disable_existing_loggers()
colossalai.launch(
config={},
rank=rank,
world_size=world_size,
host="localhost",
port=port,
backend="nccl",
)
run_blip2_test()
@pytest.mark.dist
@rerun_if_address_is_in_use()
@clear_cache_before_run()
def test_blip2():
spawn(check_blip2, 2)
if __name__ == "__main__":
test_blip2()