ColossalAI/colossalai/zero/utils/gemini_hook.py

69 lines
2.3 KiB
Python
Raw Normal View History

from contextlib import contextmanager
from enum import Enum
from functools import partial
from typing import List
import torch
from colossalai.gemini import TensorState
from colossalai.gemini.gemini_mgr import GeminiManager
from colossalai.tensor.param_op_hook import ColoParamOpHook
from colossalai.utils import is_ddp_ignored
class TrainingPhase(Enum):
FORWARD = 0
BACKWARD = 1
class GeminiZeROHook(ColoParamOpHook):
def __init__(self, gemini_manager: GeminiManager) -> None:
super().__init__()
self._gemini_manager = gemini_manager
self._chunk_manager = gemini_manager.chunk_manager
self._training_phase = TrainingPhase.FORWARD
def pre_op(self, params):
params = [p for p in params if not is_ddp_ignored(p)]
chunks = self._chunk_manager.get_chunks(params)
for p in params:
self._chunk_manager.trans_tensor_state(p, TensorState.COMPUTE)
self._gemini_manager.sample_overall_data()
self._gemini_manager.adjust_layout(chunks)
for chunk in chunks:
self._chunk_manager.access_chunk(chunk)
# record cuda model data of the current OP
self._gemini_manager.record_model_data_volume()
def post_op(self, params):
params = [p for p in params if not is_ddp_ignored(p)]
for p in params:
tensor_state = TensorState.HOLD if self._training_phase == TrainingPhase.FORWARD or not p.requires_grad else TensorState.HOLD_AFTER_BWD
self._chunk_manager.trans_tensor_state(p, tensor_state)
def pre_forward(self, params: List[torch.Tensor]) -> None:
self.pre_op(params)
def post_forward(self, params: List[torch.Tensor]) -> None:
self.post_op(params)
def pre_backward(self, params: List[torch.Tensor]) -> None:
self.pre_op(params)
def post_backward(self, params: List[torch.Tensor]) -> None:
self.post_op(params)
@contextmanager
def switch_training_phase(self, training_phase: TrainingPhase = TrainingPhase.BACKWARD):
old_training_phase = self._training_phase
try:
self._training_phase = training_phase
yield
finally:
self._training_phase = old_training_phase
switch_to_backward = switch_training_phase
switch_to_forward = partial(switch_to_backward, training_phase=TrainingPhase.FORWARD)