2022-09-20 03:20:48 +00:00
|
|
|
import copy
|
2022-10-18 02:44:23 +00:00
|
|
|
import math
|
|
|
|
from typing import List, Tuple
|
|
|
|
|
2022-09-20 03:20:48 +00:00
|
|
|
import torch
|
2022-10-18 02:44:23 +00:00
|
|
|
from colossalai.fx import is_compatible_with_meta
|
|
|
|
from colossalai.fx.codegen.activation_checkpoint_codegen import \
|
|
|
|
_find_nested_ckpt_regions
|
2022-09-20 03:20:48 +00:00
|
|
|
from colossalai.fx.graph_module import ColoGraphModule
|
2022-10-18 02:44:23 +00:00
|
|
|
from colossalai.fx.passes.algorithms.ckpt_solver_rotor import (_compute_table, _construct_chain, _rec)
|
|
|
|
from colossalai.fx.passes.meta_info_prop import MetaInfoProp
|
2022-09-20 03:20:48 +00:00
|
|
|
from colossalai.fx.profiler import parameter_size
|
2022-10-18 02:44:23 +00:00
|
|
|
from torch.fx import GraphModule, Node
|
|
|
|
|
2022-09-20 03:20:48 +00:00
|
|
|
from .linearize import linearize
|
2022-10-18 02:44:23 +00:00
|
|
|
from .operation import (Backward, Chain, ForwardCheck, ForwardEnable, ForwardNograd, Function, Loss, Offload, Prefetch,
|
|
|
|
Sequence)
|
2022-09-20 03:20:48 +00:00
|
|
|
|
|
|
|
INF = float("inf")
|
|
|
|
|
|
|
|
|
|
|
|
def _normalize_flops(chain: Chain, flops) -> Chain:
|
|
|
|
"""
|
|
|
|
Normalize flops
|
|
|
|
"""
|
|
|
|
for i in range(chain.length):
|
|
|
|
chain.fweight[i] /= flops
|
|
|
|
chain.bweight[i] /= flops
|
|
|
|
|
|
|
|
return chain
|
|
|
|
|
|
|
|
|
|
|
|
class PofoTable:
|
|
|
|
"""PofoTable
|
|
|
|
The PofoTable contains the necessary components to store intermediate results
|
|
|
|
of dynamic programming and the operations alone the way.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, chain_length: int, mem_slots: int):
|
|
|
|
"""Init pofo table
|
|
|
|
The pofo table contains two tables, opt and what, indicating values and
|
|
|
|
operations.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
chain_length (int): chain length
|
|
|
|
mem_slots (int): number of memory slots
|
|
|
|
"""
|
|
|
|
|
|
|
|
self.length = chain_length
|
|
|
|
self.mem_slots = mem_slots
|
|
|
|
|
|
|
|
# initializing tables
|
|
|
|
# the first bool indicates whether the input has bar
|
|
|
|
# opt table is for value, opt[True/False][i][A][(df, db)] = OCx(i, A, df, db)
|
|
|
|
# what table is for decision, what[True/False][i][A][(df, db)] = (is_enable, is_offload, index)
|
|
|
|
# where is_enable indicates whether we enable the gradient, is_offload indicates whether we
|
|
|
|
# offload the input, index indicates the end of F_\empty sequence if is_enable = False
|
|
|
|
self.opt = {
|
|
|
|
False: [[{} for _ in range(mem_slots + 1)] for _ in range(self.length + 1)],
|
|
|
|
True: [[{} for _ in range(mem_slots + 1)] for _ in range(self.length + 1)]
|
|
|
|
}
|
|
|
|
self.what = {
|
|
|
|
False: [[{} for _ in range(mem_slots + 1)] for _ in range(self.length + 1)],
|
|
|
|
True: [[{} for _ in range(mem_slots + 1)] for _ in range(self.length + 1)]
|
|
|
|
}
|
|
|
|
|
|
|
|
def _get_value(self, state, table, default):
|
|
|
|
i, act_size, df, db, input_has_bar = state
|
|
|
|
if act_size + df > self.mem_slots or act_size + db > self.mem_slots:
|
|
|
|
return default
|
|
|
|
|
|
|
|
try:
|
|
|
|
return table[input_has_bar][i][act_size][(df, db)]
|
|
|
|
except KeyError:
|
|
|
|
print(f"state not found {state}")
|
|
|
|
|
|
|
|
def get_opt(self, state):
|
|
|
|
return self._get_value(state, self.opt, INF)
|
|
|
|
|
|
|
|
def get_what(self, state):
|
|
|
|
return self._get_value(state, self.what, INF)
|
|
|
|
|
|
|
|
def set_value(self, state, opt, what):
|
|
|
|
i, act_size, df, db, input_has_bar = state
|
|
|
|
self.opt[input_has_bar][i][act_size][(df, db)] = opt
|
|
|
|
self.what[input_has_bar][i][act_size][(df, db)] = what
|
|
|
|
|
|
|
|
|
|
|
|
class PofoSolver:
|
|
|
|
"""PofoSolver that executes algorithm mentioned in https://proceedings.neurips.cc/paper/2021/hash/c8461bf13fca8a2b9912ab2eb1668e4b-Abstract.html
|
|
|
|
The new pofo solver is based on paper Efficient Combination of Rematerialization and Offloading for Training DNNs
|
|
|
|
and it's code given in the supplemental. Currently we doesn't use the whole set up in the original paper and reuse
|
|
|
|
rotor solver for the backward sequence as suggested in supplemental. The solver now is able to find strategy with offload.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, chain: Chain, max_memory: int, bandwidth, mem_slots: int) -> None:
|
|
|
|
self.chain = chain
|
|
|
|
self.length = chain.length
|
|
|
|
self.max_memory = max_memory
|
|
|
|
self.mem_slots = mem_slots
|
|
|
|
self.mem_unit = max_memory / mem_slots
|
|
|
|
self.bandwidth = bandwidth
|
|
|
|
|
|
|
|
self.disc_chain = copy.deepcopy(self.chain)
|
2022-09-23 17:52:57 +00:00
|
|
|
self.disc_chain._discretize(self.mem_unit)
|
2022-09-20 03:20:48 +00:00
|
|
|
|
|
|
|
self.rotor_table = _compute_table(self.disc_chain, mem_slots)
|
|
|
|
self._compute_pofo_table()
|
|
|
|
|
|
|
|
def _discretize(self, *values) -> Tuple:
|
|
|
|
return tuple(math.ceil(value / self.mem_unit) for value in values)
|
|
|
|
|
|
|
|
def _undiscretize(self, *discrete_values) -> Tuple:
|
|
|
|
if len(discrete_values) == 1:
|
|
|
|
return discrete_values[0] * self.mem_unit
|
|
|
|
else:
|
|
|
|
return tuple(d * self.mem_unit for d in discrete_values)
|
|
|
|
|
|
|
|
def _mmax_all(self, idx: int):
|
|
|
|
"""
|
|
|
|
Calculate the maximum memory usage of Fi_all
|
|
|
|
"""
|
|
|
|
|
|
|
|
return self.chain.cbweight[idx + 1] + self.chain.fwd_mem_tmp[idx]
|
|
|
|
|
|
|
|
def _mmax_b(self, idx: int):
|
|
|
|
"""
|
|
|
|
Calculate the maximum memory usage of Bi
|
|
|
|
"""
|
|
|
|
|
|
|
|
return self.chain.cbweight[idx +
|
|
|
|
1] + self.chain.cweight[idx +
|
|
|
|
1] + self.chain.cweight[idx] + self.chain.bwd_mem_tmp[idx]
|
|
|
|
|
|
|
|
def _mmax_ng(self, i: int, j: int):
|
|
|
|
"""
|
|
|
|
Calculate the maximum memory usage of CF_i, F_i+1\empty, ... F_j\empty
|
|
|
|
"""
|
|
|
|
|
|
|
|
res = self.chain.cweight[j + 1] + self.chain.fwd_mem_tmp[j]
|
|
|
|
if j > i:
|
|
|
|
res += self.chain.cweight[j]
|
|
|
|
return res
|
|
|
|
|
|
|
|
def _rotor_estimated_bwd(self, i, j, m, delta):
|
|
|
|
compute = self.rotor_table[0][math.floor((m - self.chain.cweight[i]) / self.mem_unit)][i][j]
|
|
|
|
comm = delta / self.bandwidth
|
|
|
|
return (max(compute, comm) + compute + comm) / 2
|
|
|
|
|
|
|
|
def _rotor_estimated_bwd_sequence(self, i, j, m, delta):
|
2022-09-23 17:52:57 +00:00
|
|
|
return _rec(self.disc_chain, i, j, math.floor((m - self.chain.cweight[i]) / self.mem_unit), self.rotor_table)
|
2022-09-20 03:20:48 +00:00
|
|
|
|
|
|
|
def _common_values_enable(self, state: Tuple):
|
|
|
|
|
|
|
|
idx, act_size, df, db, input_has_bar = state
|
|
|
|
input_size = self.chain.cbweight[idx] if input_has_bar else self.chain.cweight[idx]
|
|
|
|
mf = act_size + df + input_size
|
|
|
|
mb = act_size + db + input_size
|
|
|
|
mem_avail = self.max_memory - act_size - input_size
|
|
|
|
f_usage = self._mmax_all(idx)
|
|
|
|
b_usage = self._mmax_b(idx)
|
|
|
|
|
|
|
|
# infeasible
|
|
|
|
if f_usage > mem_avail or b_usage > mem_avail:
|
|
|
|
return None
|
|
|
|
|
|
|
|
# calculate idle time
|
|
|
|
eps_f_beta = max(0, f_usage - self.max_memory + mf)
|
|
|
|
eps_b_beta = max(0, b_usage - self.max_memory + mb)
|
|
|
|
idle_time = (eps_f_beta + eps_b_beta) / self.bandwidth
|
|
|
|
|
|
|
|
# calculate offload and prefetch data
|
|
|
|
offload_data = self.chain.fweight[idx] * self.bandwidth + eps_f_beta
|
|
|
|
prefetch_data = self.chain.bweight[idx] * self.bandwidth + eps_b_beta
|
|
|
|
|
|
|
|
# total_time
|
|
|
|
total_time = self.chain.fweight[idx] + self.chain.bweight[idx] + idle_time
|
|
|
|
|
|
|
|
return (offload_data, prefetch_data, total_time, idle_time)
|
|
|
|
|
|
|
|
def _common_values_nograd(self, state: Tuple, j: int, iterative: bool = False):
|
|
|
|
|
|
|
|
i, act_size, df, db, input_has_bar = state
|
|
|
|
|
|
|
|
# compute new epsilon_tmp and sum_fwds
|
|
|
|
if iterative:
|
|
|
|
self.epsilon_tmp = max(self.epsilon_tmp, self._mmax_ng(i, j) - self.bandwidth * self.sum_fwds)
|
|
|
|
self.sum_fwds += self.chain.fweight[j]
|
|
|
|
else:
|
|
|
|
self.epsilon_tmp = max(
|
|
|
|
self._mmax_ng(i, k) - self.bandwidth * sum(self.chain.fweight[i:k]) for k in range(i, j + 1))
|
|
|
|
self.sum_fwds = sum(self.chain.fweight[i:j + 1])
|
|
|
|
|
|
|
|
input_size = self.chain.cbweight[i] if input_has_bar else self.chain.cweight[i]
|
|
|
|
mf = act_size + df + input_size
|
|
|
|
mem_avail = self.max_memory - act_size - input_size
|
|
|
|
|
|
|
|
# if infeasible
|
|
|
|
if max(self._mmax_ng(i, k) for k in range(i, self.length)) > mem_avail:
|
|
|
|
return None
|
|
|
|
|
|
|
|
eps_f_beta = max(0, self.epsilon_tmp - self.max_memory + mf)
|
|
|
|
offload_data = self.sum_fwds * self.bandwidth + eps_f_beta
|
|
|
|
|
|
|
|
# TODO: Implement the precise backward recompute sequence mentioned in the paper
|
|
|
|
# currently we will use an approximate way to get the backward time
|
|
|
|
time_backward = self._rotor_estimated_bwd(i, j, mem_avail, db)
|
|
|
|
|
|
|
|
prefetch_data = time_backward * self.bandwidth
|
|
|
|
idle_time = eps_f_beta / self.bandwidth
|
|
|
|
total_time = self.sum_fwds + idle_time + time_backward
|
|
|
|
|
|
|
|
return (offload_data, prefetch_data, total_time, idle_time)
|
|
|
|
|
|
|
|
def _new_values(self, state: Tuple, do_offload: bool, common_values: Tuple) -> Tuple:
|
|
|
|
"""Generate new values for next state
|
|
|
|
|
|
|
|
Args:
|
|
|
|
state (Tuple): undiscretized states
|
|
|
|
do_offload (bool): bool type indicates whether we need to do offload
|
|
|
|
common_values (Tuple): common values (offload_data, prefetch_data, total_time, idle_time)
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Tuple: (new_act_size, new_df, new_db)
|
|
|
|
"""
|
|
|
|
idx, act_size, df, db, input_has_bar = state
|
|
|
|
offload_data, prefetch_data, *_ = common_values
|
|
|
|
input_size = self.chain.cbweight[idx] if input_has_bar else self.chain.cweight[idx]
|
|
|
|
if do_offload:
|
|
|
|
new_act_size = act_size
|
|
|
|
new_df = max(0, df + input_size - offload_data)
|
|
|
|
new_db = max(0, db - prefetch_data) + input_size
|
|
|
|
else:
|
|
|
|
new_act_size = act_size + input_size
|
|
|
|
new_df = max(0, df - offload_data)
|
|
|
|
new_db = max(0, db - prefetch_data)
|
|
|
|
|
|
|
|
return (new_act_size, new_df, new_db)
|
|
|
|
|
|
|
|
def _compute_pofo_table(self):
|
|
|
|
self.table = PofoTable(self.length, self.mem_slots)
|
|
|
|
|
|
|
|
# initializing the loss
|
|
|
|
for act_size in range(self.mem_slots + 1):
|
|
|
|
for df in range(self.mem_slots - act_size + 1):
|
|
|
|
for db in range(self.mem_slots - act_size + 1):
|
|
|
|
# undiscretize for idle time calculation
|
|
|
|
origin_values = self._undiscretize(act_size, df, db)
|
|
|
|
|
|
|
|
for input_has_bar in (False, True):
|
|
|
|
disc_state = (self.length, act_size, df, db, input_has_bar)
|
|
|
|
state = (self.length, *origin_values, input_has_bar)
|
|
|
|
common_values = self._common_values_enable(state)
|
|
|
|
|
|
|
|
# if no feasible choice
|
|
|
|
if common_values is None:
|
|
|
|
self.table.set_value(disc_state, INF, None)
|
|
|
|
continue
|
|
|
|
|
|
|
|
# if there is feasible choice
|
|
|
|
new_act_size, new_df, new_db = self._new_values(state, False, common_values)
|
|
|
|
eps_g = (new_df + new_db) / self.bandwidth
|
|
|
|
total_time = common_values[2] + eps_g
|
|
|
|
self.table.set_value(disc_state, total_time, (True, False))
|
|
|
|
|
|
|
|
# main loop
|
|
|
|
for i in reversed(range(self.length)):
|
|
|
|
for act_size in range(self.mem_slots + 1):
|
|
|
|
for df in range(self.mem_slots - act_size + 1):
|
|
|
|
for db in range(self.mem_slots - act_size + 1):
|
|
|
|
# undiscretize for idle time calculation
|
|
|
|
origin_values = self._undiscretize(act_size, df, db)
|
|
|
|
|
|
|
|
for input_has_bar in (False, True):
|
|
|
|
best_result = INF
|
|
|
|
best_choice = None
|
|
|
|
disc_state = (i, act_size, df, db, input_has_bar)
|
|
|
|
state = (i, *origin_values, input_has_bar)
|
|
|
|
|
|
|
|
# case 1: start with F_all
|
|
|
|
vals_enable = self._common_values_enable(state)
|
|
|
|
if vals_enable is not None:
|
|
|
|
for do_offload in (True, False):
|
|
|
|
new_state = self._new_values(state, do_offload, vals_enable)
|
|
|
|
new_state = (i + 1, *self._discretize(*new_state), True)
|
|
|
|
total_time = vals_enable[2]
|
|
|
|
results_all = self.table.get_opt(new_state) + total_time
|
|
|
|
if results_all < best_result:
|
|
|
|
best_result = results_all
|
|
|
|
best_choice = (True, do_offload)
|
|
|
|
|
|
|
|
# case 2: start with F_ck
|
|
|
|
self.sum_fwds = 0
|
|
|
|
self.epsilon_tmp = 0
|
|
|
|
for j in range(i, self.length):
|
|
|
|
vals_nograd = self._common_values_nograd(state, j, True)
|
|
|
|
|
|
|
|
# if infeasible
|
|
|
|
if vals_nograd is None:
|
|
|
|
continue
|
|
|
|
|
|
|
|
for do_offload in (True, False):
|
|
|
|
new_state = self._new_values(state, do_offload, vals_nograd)
|
|
|
|
new_state = (j + 1, *self._discretize(*new_state), False)
|
|
|
|
total_time = vals_nograd[2]
|
|
|
|
result_nograd = total_time + self.table.get_opt(new_state)
|
|
|
|
if result_nograd < best_result:
|
|
|
|
best_result = result_nograd
|
|
|
|
best_choice = (False, do_offload, j)
|
|
|
|
|
|
|
|
self.table.set_value(disc_state, best_result, best_choice)
|
|
|
|
|
|
|
|
def pofo_rec(self, disc_state):
|
|
|
|
i, act_size, df, db, input_has_bar = disc_state
|
|
|
|
result = Sequence(Function("pofo", *disc_state))
|
|
|
|
what = self.table.get_what(disc_state)
|
|
|
|
state = self._undiscretize(act_size, df, db)
|
|
|
|
state = (i, *state, input_has_bar)
|
|
|
|
i, act_size, df, db, input_has_bar = state
|
|
|
|
|
|
|
|
if what is None:
|
|
|
|
return None
|
|
|
|
|
|
|
|
# if loss
|
|
|
|
if i == self.length:
|
|
|
|
result.insert(Loss())
|
|
|
|
return result
|
|
|
|
|
|
|
|
if what[0]:
|
|
|
|
do_offload = what[1]
|
|
|
|
values = self._common_values_enable(state)
|
|
|
|
new_state = self._discretize(*self._new_values(state, do_offload, values))
|
|
|
|
new_state = (i + 1, *new_state, True)
|
|
|
|
if do_offload:
|
|
|
|
result.insert(Offload(i, input_has_bar))
|
|
|
|
result.insert(ForwardEnable(i))
|
|
|
|
result.insert_sequence(self.pofo_rec(new_state))
|
|
|
|
if do_offload:
|
|
|
|
result.insert(Prefetch(i, input_has_bar))
|
|
|
|
result.insert(Backward(i))
|
|
|
|
|
|
|
|
else:
|
|
|
|
_, do_offload, j = what
|
|
|
|
values = self._common_values_nograd(state, j)
|
|
|
|
new_state = self._discretize(*self._new_values(state, do_offload, values))
|
|
|
|
new_state = (j + 1, *new_state, False)
|
|
|
|
if do_offload:
|
|
|
|
result.insert(Offload(i, input_has_bar))
|
|
|
|
result.insert(ForwardCheck(i))
|
|
|
|
for k in range(i + 1, j + 1):
|
|
|
|
result.insert(ForwardNograd(k))
|
|
|
|
result.insert_sequence(self.pofo_rec(new_state))
|
|
|
|
if do_offload:
|
|
|
|
result.insert(Prefetch(i, input_has_bar))
|
|
|
|
m = self.max_memory - act_size - (self.chain.cbweight[i] if input_has_bar else self.chain.cweight[i])
|
|
|
|
|
|
|
|
#TODO: Implement the precise backward recompute sequence mentioned in the paper
|
|
|
|
result.insert_sequence(self._rotor_estimated_bwd_sequence(i, j, m, db))
|
|
|
|
|
|
|
|
return result
|
|
|
|
|
|
|
|
|
2022-09-23 17:52:57 +00:00
|
|
|
def _annotate_from_pofo_sequence(sequence: Sequence, node_list: List[List[Node]]):
|
|
|
|
op_list = sequence.list_operations()
|
|
|
|
loss_op = next(op for op in op_list if isinstance(op, Loss))
|
|
|
|
fwd_list = op_list[:op_list.index(loss_op)]
|
|
|
|
bwd_list = op_list[op_list.index(loss_op) + 1:]
|
|
|
|
ckpt_idx = 0
|
|
|
|
in_ckpt = False
|
|
|
|
ckpt_region = []
|
|
|
|
|
|
|
|
# forward annotation
|
|
|
|
for op in fwd_list:
|
|
|
|
if in_ckpt:
|
|
|
|
if isinstance(op, ForwardNograd):
|
|
|
|
ckpt_region.append(op.index)
|
|
|
|
|
|
|
|
elif isinstance(op, ForwardEnable):
|
|
|
|
in_ckpt = False
|
|
|
|
for node_idx in ckpt_region:
|
|
|
|
for n in node_list[node_idx]:
|
|
|
|
setattr(n, "activation_checkpoint", [ckpt_idx])
|
|
|
|
|
|
|
|
ckpt_idx += 1
|
|
|
|
ckpt_region = []
|
|
|
|
|
|
|
|
elif isinstance(op, ForwardCheck):
|
|
|
|
for node_idx in ckpt_region:
|
|
|
|
for n in node_list[node_idx]:
|
|
|
|
setattr(n, "activation_checkpoint", [ckpt_idx])
|
|
|
|
|
|
|
|
ckpt_idx += 1
|
|
|
|
ckpt_region = [op.index]
|
|
|
|
|
|
|
|
else:
|
|
|
|
if isinstance(op, ForwardCheck):
|
|
|
|
in_ckpt = True
|
|
|
|
ckpt_region.append(op.index)
|
|
|
|
|
|
|
|
# annotate the backward if there is any nested activation checkpoint
|
|
|
|
in_recompute = False
|
|
|
|
for op in bwd_list:
|
|
|
|
if in_recompute:
|
|
|
|
if isinstance(op, ForwardNograd):
|
|
|
|
ckpt_region.append(op.index)
|
|
|
|
|
|
|
|
elif isinstance(op, ForwardEnable):
|
|
|
|
for node_idx in ckpt_region:
|
|
|
|
for n in node_list[node_idx]:
|
|
|
|
n.activation_checkpoint.append(ckpt_idx)
|
|
|
|
|
|
|
|
ckpt_idx += 1
|
|
|
|
ckpt_region = []
|
|
|
|
|
|
|
|
elif isinstance(op, ForwardCheck):
|
|
|
|
for node_idx in ckpt_region:
|
|
|
|
for n in node_list[node_idx]:
|
|
|
|
n.activation_checkpoint.append(ckpt_idx)
|
|
|
|
|
|
|
|
ckpt_idx += 1
|
|
|
|
ckpt_region = [op.index]
|
|
|
|
|
|
|
|
elif isinstance(op, Backward):
|
|
|
|
for node_idx in ckpt_region:
|
|
|
|
for n in node_list[node_idx]:
|
|
|
|
n.activation_checkpoint.append(ckpt_idx)
|
|
|
|
|
|
|
|
in_recompute = False
|
|
|
|
|
|
|
|
else:
|
|
|
|
if not isinstance(op, Backward):
|
|
|
|
in_recompute = True
|
|
|
|
ckpt_idx = 0
|
|
|
|
ckpt_region = []
|
|
|
|
if isinstance(op, ForwardCheck):
|
|
|
|
ckpt_region.append(op.index)
|
|
|
|
|
|
|
|
# postprocess, make sure every activation checkpoint label in the
|
|
|
|
# same activation checkpoint region (level = 0) has the same length
|
|
|
|
op_list = []
|
|
|
|
for node in node_list:
|
|
|
|
op_list += node
|
|
|
|
ckpt_regions = _find_nested_ckpt_regions(op_list)
|
|
|
|
for (start_idx, end_idx) in ckpt_regions:
|
|
|
|
nested_length = max(len(op_list[idx].activation_checkpoint) for idx in range(start_idx, end_idx + 1))
|
|
|
|
for idx in range(start_idx, end_idx + 1):
|
|
|
|
op_list[idx].activation_checkpoint += [None] * (nested_length - len(op_list[idx].activation_checkpoint))
|
|
|
|
|
|
|
|
# annotate the offload
|
|
|
|
offload_idx = 0
|
|
|
|
for idx, op in enumerate(fwd_list):
|
|
|
|
if isinstance(op, Offload):
|
|
|
|
# corner case: offload input
|
|
|
|
if op.index == 0:
|
|
|
|
if isinstance(fwd_list[idx + 1], ForwardCheck):
|
|
|
|
for n in node_list[op.index]:
|
|
|
|
setattr(n, "activation_offload", True)
|
|
|
|
else:
|
|
|
|
for n in node_list[op.index]:
|
|
|
|
setattr(n, "activation_offload", (offload_idx, True, False))
|
|
|
|
offload_idx += 1
|
|
|
|
|
|
|
|
else:
|
|
|
|
if op.has_bar:
|
|
|
|
# annotate previous node
|
|
|
|
if hasattr(node_list[op.index - 1][0], "activation_offload"):
|
|
|
|
for n in node_list[op.index - 1]:
|
|
|
|
n.activation_offload[-1] = True
|
|
|
|
else:
|
|
|
|
for n in node_list[op.index - 1]:
|
|
|
|
setattr(n, "activation_offload", [offload_idx, False, True])
|
|
|
|
|
|
|
|
offload_idx += 1
|
|
|
|
|
|
|
|
# annotate this node
|
|
|
|
if isinstance(fwd_list[idx + 1], ForwardCheck):
|
|
|
|
for n in node_list[op.index]:
|
|
|
|
setattr(n, "activation_offload", True)
|
|
|
|
else:
|
|
|
|
for n in node_list[op.index]:
|
|
|
|
setattr(n, "activation_offload", [offload_idx, True, False])
|
|
|
|
|
|
|
|
offload_idx += 1
|
|
|
|
|
|
|
|
|
2022-09-20 03:20:48 +00:00
|
|
|
def solver_pofo(gm: ColoGraphModule,
|
|
|
|
data,
|
|
|
|
bandwidth,
|
|
|
|
flops,
|
|
|
|
mem_limit: int,
|
|
|
|
mem_slots: int = 50,
|
|
|
|
cnode: List[str] = None,
|
|
|
|
eps: float = 0.0) -> ColoGraphModule:
|
|
|
|
"""Solver that combine offload and activation checkpoint
|
|
|
|
Reference: https://proceedings.neurips.cc/paper/2021/hash/c8461bf13fca8a2b9912ab2eb1668e4b-Abstract.html
|
|
|
|
|
|
|
|
Args:
|
|
|
|
gm (ColoGraphModule): ColoGraphModule derived from tracer
|
|
|
|
data: input of the model
|
|
|
|
bandwidth: offload bandwidth, unit Byte/s
|
|
|
|
flops: FLOPS of device, unit FLOPs/s
|
|
|
|
mem_limit (int): memory limit, unit Byte
|
|
|
|
mem_slots (int, optional): number of memory slots. Defaults to 500.
|
|
|
|
cnode (List[str], optional): common node for linearize. Defaults to None.
|
|
|
|
eps (float, optional): epsilon for memory decay. Defaults to 0.02.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
ColoGraphModule: annotated graph module
|
|
|
|
"""
|
|
|
|
|
|
|
|
node_list = linearize(gm, cnode)
|
|
|
|
mem_limit -= parameter_size(gm)
|
|
|
|
|
|
|
|
# prepare data
|
2022-10-18 02:44:23 +00:00
|
|
|
if is_compatible_with_meta():
|
2022-09-27 02:26:52 +00:00
|
|
|
from colossalai.fx.profiler import MetaTensor
|
|
|
|
data = MetaTensor(data, fake_device=next(gm.parameters()).device)
|
2022-09-20 03:20:48 +00:00
|
|
|
MetaInfoProp(gm).run(data)
|
|
|
|
chain: Chain = _construct_chain(node_list, data)
|
|
|
|
chain = _normalize_flops(chain, flops)
|
|
|
|
# currently we view loss as an op without expense
|
|
|
|
chain.cbweight.append(0)
|
|
|
|
chain.cweight.append(0)
|
|
|
|
chain.fwd_mem_tmp.append(0)
|
|
|
|
chain.bwd_mem_tmp.append(0)
|
|
|
|
chain.fweight.append(0)
|
|
|
|
chain.bweight.append(0)
|
|
|
|
|
|
|
|
solver = PofoSolver(chain, mem_limit, bandwidth, mem_slots)
|
|
|
|
first_state = (0, 0, 0, 0, False)
|
|
|
|
sequence = solver.pofo_rec(first_state)
|
|
|
|
if sequence == None:
|
2022-09-23 17:52:57 +00:00
|
|
|
raise ValueError(f"Cannot solve sequence with {mem_limit} Bytes memory")
|
2022-09-20 03:20:48 +00:00
|
|
|
|
2022-09-23 17:52:57 +00:00
|
|
|
_annotate_from_pofo_sequence(sequence, node_list)
|
2022-09-20 03:20:48 +00:00
|
|
|
setattr(gm, "__sequence__", sequence)
|
|
|
|
return gm
|